Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= X^2- 6X +9 + y^2 -22y + 121+ z^2+12z+ 36+2019
= (x-3)2+(y-11)2+(z+6)2+2019
Lại có (x-3)2+(y-11)2+(z+6)2\(\ge\)0
=> A\(\ge\)2019
Vậy Min A = 2019 <=> x= 3; y=11; z= -6
\(x^2+y^2+z^2-6x-22y+12z+166=0\)
\(\Leftrightarrow x^2+y^2+z^2-6x-22y+12z+121+9+36=0\)
\(\Leftrightarrow\left(x^2-6x+9\right)+\left(y^2-22y+121\right)+\left(z^2+12z+36\right)=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(y-11\right)^2+\left(z+6\right)^2=0\)
\(\hept{\begin{cases}\left(x-3\right)^2\ge0\\\left(y-11\right)^2\ge0\\\left(z+6\right)^2\ge0\end{cases}}\Rightarrow\hept{\begin{cases}\left(x-3\right)^2=0\\\left(y-11\right)^2=0\\\left(z+6\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-3=0\\y-11=0\\z+6=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=11\\z=-6\end{cases}}\)
a)\(2x^2+y^2+4x-2y-2xy+10=2x^2+y^2+4x-2y\left(x+1\right)+10\)
\(=y^2-2y\left(x+1\right)+2\left(x^2+2x+1\right)+8\)
\(=y^2-2y\left(x+1\right)+2\left(x+1\right)^2+8\)
\(=\left(y+x+1\right)^2+\left(x+1\right)^2+8\ge8\)
Dấu "=" xảy ra khi x=-1 và y=0
max A= -201 tại x=10(câu này dễ)
B= (x-2y+5)^2+(y-1)^2+2 suy ra max B=2 tại y=1 => x = -3. ^_^
a/ A = 2x2 + y2 - 2xy - 2x + 3
= (x2 - 2xy + y2) + (x2 - 2x + 1) + 2
= (x - y)2 + (x - 1)2 + 2\(\ge2\)
biến đổi tương đương A = \((x^2-6x+9)+(y^2-22y+121)+(z^2+12z+36)\)\(+2019\)
=> A = \((x-3)^2+(y-11)^2+(z+6)^2+2019\ge2019\)
VẬY GTNN CỦA A LÀ 2019 ĐẠT ĐƯỢC TẠI x=3 , y=11,z=-6