Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P=4x2+4xy+y2+x2-4x+4+y2+8y+16+5
=> P=(2x+y)2+ (x-2)2 + (y+4)2 +5
Ta nhận thấy: \(\hept{\begin{cases}\left(2x+y\right)^2\ge0\forall x,y\\\left(x-2\right)^2\ge0\forall x\\\left(y+4\right)^2\ge0\forall y\end{cases}}\)
=> P=(2x+y)2+ (x-2)2 + (y+4)2 +5 \(\ge\)5 Với mọi x, y
=> GTNN của P là Pmin = 5
Đạt được khi:
\(\hept{\begin{cases}\left(2x+y\right)^2=0\\\left(x-2\right)^2=0\\\left(y+4\right)^2=0\end{cases}}\) <=> \(\hept{\begin{cases}2x+y=0\\x-2=0\\y+4=0\end{cases}}\) <=> \(\hept{\begin{cases}x=2&y=-4&\end{cases}}\)
\(5x^2+2y^2-4xy+20x-8y\)
\(=\left(4x^2-4xy+y^2\right)+\left(x^2+20x+100\right)+y^2-8y+16-116\)
\(=\left(2x-y\right)^2+\left(x+10\right)^2+\left(y-4\right)^2-116\ge-116\)
GTNN của biểu thức = -116
\(\Leftrightarrow\hept{\begin{cases}2x-y=0\\x+10=0\\y-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x-y=0\\x=-10\\y=4\end{cases}}}\)( Vô lí )
=> Không tìm được giá trị nào của x để biểu thức có giá trị nhỏ nhất .
\(=5\left(x^2-\dfrac{4}{5}xy+\dfrac{4}{25}y^2\right)+\dfrac{1}{5}y^2-2y+2023\)
\(=5\left(x-\dfrac{2}{5}y\right)^2+\dfrac{1}{5}\left(y^2-10y+25\right)+2018\)
\(=5\left(x-\dfrac{2}{5}y\right)^2+\dfrac{1}{5}\left(y-5\right)^2+2018>=2018\)
Dấu = xảy ra khi y=5 và x=2/5y=2
\(A=5\left(x^2-2x.\dfrac{2}{5}y+\dfrac{4}{25}y^2\right)+\dfrac{1}{5}\left(y^2-10y+25\right)+2025\)
\(A=5\left(x-\dfrac{2y}{5}\right)^2+\dfrac{1}{5}\left(y-5\right)^2+2025\ge2025\)
\(\Rightarrow A_{min}=2025\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}y-5=0\\x-\dfrac{2y}{5}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=5\\x=2\end{matrix}\right.\)