K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2018

http://123link.pro/cS4uABOY

29 tháng 8 2018

B = 5 - 4x2 + 6x 

= -(4x2 - 6x - 5)

= -(4x2 - 6x + 9/4 - 29/4)

= -(4x2 - 6x + 9/4) + 29/4

B = -(2x - 3/2)2 + 29/4

Vì -(2x - 3/2)2 \(\le0\forall x\)

Nên : B = -(2x - 3/2)2 + 29/4 \(\le\frac{29}{4}\forall x\)

Vậy Bmax \(\frac{29}{4}\) khi x = \(\frac{3}{4}\)

6 tháng 1 2021

a) Ta có: \(Q=-x^2-y^2+4x-4y+2=-\left(x^2+y^2-4x+4y-2\right)\)

\(=-\left(x^2-4x+4+y^2+4y+4\right)+10\)

\(=-\left[\left(x-2\right)^2+\left(y+2\right)^2\right]+10\le10\forall x,y\)

Vậy MaxQ=10 khi x=2, y=-2

b) +Ta có: \(A=-x^2-6x+5=-\left(x^2+6x-5\right)=-\left(x^2+6x+9-14\right)\)

\(=-\left(x^2+6x+9\right)+14=-\left(x+3\right)^2+14\le14\forall x\)

Vậy MaxA=14 khi x=-3

+Ta có: \(B=-4x^2-9y^2-4x+6y+3=-\left(4x^2+9y^2+4x-6y-3\right)\)

\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)

\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2\right]+5\le5\forall x,y\)

Vậy MaxB=5 khi x=-1/2, y=1/3

c) Ta có: \(P=x^2+y^2-2x+6y+12=x^2-2x+1+y^2+6y+9+2\)

\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)

Vậy MinP=2 khi x=1, y=-3

12 tháng 7 2018

1/

a, \(A=4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)

Dấu "=" xảy ra khi x=1/2

Vậy Amin=4 khi x=1/2

b, \(B=3x^2+6x-1=3\left(x^2+2x+1\right)-4=3\left(x+1\right)^2-4\ge-4\)

Dấu "=" xảy ra khi x=-1

Vậy Bmin = -4 khi x=-1

2/

a, \(A=10+6x-x^2=-\left(x^2-6x+9\right)+19=-\left(x-3\right)^2+19\le19\)

Dấu "=" xảy ra khi x=3

Vậy Amax = 19 khi x=3

b, \(B=7-5x-2x^2=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)+\frac{31}{8}=-2\left(x-\frac{5}{4}\right)^2+\frac{31}{8}\le\frac{31}{8}\)

Dấu "=" xảy ra khi x=5/4

Vậy Bmax = 31/8 khi x=5/4

20 tháng 10 2015

a) x2 - 2x + 5 = (x - 1)2 + 4 >= 4

Min là 4 khi x = 1

 

9 tháng 8 2021

A= 4(x-2)^2 - 9 >= -9

Min A=-9 khi x=2

B= 9(x+1/3)^2 +3 >=3

Min B=3 khi x= -1/3

10 tháng 9 2020

\(A=x^2-6x+10=\left(x-3\right)^2+1\ge1\)

\(\Rightarrow A_{min}=1\Leftrightarrow x=3\)

\(B=4x^2-4x+25=\left(2x-1\right)^2+24\ge24\)

\(\Rightarrow B_{min}=24\Leftrightarrow x=\frac{1}{2}\)

\(C=3x^2+9x+12=3\left(x+\frac{3}{2}\right)^2+\frac{21}{4}\ge\frac{21}{4}\)

\(\Rightarrow C_{min}=\frac{21}{4}\Leftrightarrow x=\frac{-3}{2}\)

1 tháng 8 2015

1. x2-8x+1 = x2 -2x.4 + 42 - 42 +1 = ( x- 4 )2 - 15 
mà ( x - 4 )2  > 0
=> ( x - 4 )2 -15 > 0

Vậy -15 là gt min của biểu thức khi x = 4

2. x- 4x + y2 - 6y + 2 = x2 - 2.2x + 22 + y2 - 2.3y + 32 -11 = (x-2)2 + ( y - 3)2 -11
mà ( x - 2)2 > 0
      ( y - 3)2 > 0 
Vậy -11 là gt min của biểu thức khi x=2 và y = 3

Mình nghĩ là bài 3 là tìm gt lớn nhất chứ bạn ^^

 

 

22 tháng 6 2018

\(=x^2+6x+5\)

    \(=x^2+6x+9-4\)

   \(=\) \(\left(x+3\right)^2-4\)\(< =-4\)

dấu bằng xảy ra <=> \(\left(x+3\right)^2=0\)

                          <=>\(x=-3\)

B= \(x^2-4x-3\)

  \(=x^2-4x+4-7\)

  \(=\left(x-2\right)^2-7< =-7\)

dấu bằng xảy ra <=> \(\left(x-2\right)^2=0\)

                          <=> \(x=2\)

                              

22 tháng 6 2018

P/s pain sẽ mẫu cho 1 bài nha bài còn lại bạn tự làm :)

\(A=x^2+6x+5\)

\(A=x^2+6x+9-4\)

\(A=\left(x+3\right)^2-4\ge-4\)

\(\Rightarrow A_{min}=-4\)

dấu "=" xảy ra \(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)

Vậy  Amin = -4 khi x = -3

9 tháng 1 2018

\(A=\frac{x^2}{2}-\frac{x}{6}+3\)

\(2A=x^2-\frac{x}{3}+6=x^2-2.x\frac{1}{6}+\frac{1}{36}+\frac{35}{36}\)

\(2A=\left(x+\frac{1}{6}\right)^2+\frac{35}{36}\ge\frac{35}{36}\)

\(\Rightarrow A\ge\frac{35}{72}\)Dấu "=" xảy ra khi \(x=\frac{-1}{6}\)

b)\(B=x^4-4x^3+6x^2-4x+5\)

\(B=\left(x^4-4x^3+4x^2\right)+\left(2x^2-4x+2\right)+3\)

\(B=\left(x^2-2x\right)^2+2\left(x+1\right)^2+3\ge3\)

Dấu "=" xảy ra khi:\(x=0;-1;2\)