Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2x^2+y^2+4x-2y-2xy+10\)
\(=x^2+x^2+y^2+4x-2y-2xy+4+6\)
\(=\left(x^2-2xy+y^2\right)+\left(x^2+4x+4\right)-2\left(y-3\right)\)
\(=\left(x-y\right)^2+\left(x+2\right)^2-2\left(y-3\right)\)
.......................chắc không phải cách làm này đâu!
b) \(5x^2+y^2+2xy-4x\)
\(=x^2+4x^2+y^2+2xy-4x\)
\(=\left(x^2+2xy+y^2\right)+x^2-4x\)
\(\left(x+y\right)^2+x^2-4x\)
a, \(2x^2\)+\(y^2\)+\(4x-2y-2xy+10\)\(=y^2\)\(-x^2\)\(-1+2x-2y-2xy+3x^2+2x+11\)\(=\left(y-x-1^{ }\right)^2\)\(+3\left(x^2+\frac{2}{3}x+\frac{1}{9}\right)+\frac{32}{3}\)\(=\left(y-x-1\right)^2+3\left(x+\frac{1}{3}\right)^2+\frac{32}{3}\)\(\ge\frac{32}{3}\)
VẬY GTNN CỦA BIỂU THỨC \(=\frac{32}{3}\)KHI \(y-x-1=0;x+\frac{1}{3}=0\Rightarrow x=\frac{-1}{3};y=\frac{2}{3}\)
Câu 1:
a: \(C=a^2+b^2=\left(a+b\right)^2-2ab=23^2-2\cdot132=265\)
b: \(D=x^3+y^3+3xy\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\)
\(=1-3xy+3xy=1\)
a)\(x^2-4x+y^2-2y+10=\left(x^2-4x+4\right)+\left(y^2-2y+1\right)+5\)
\(=\left(x-2\right)^2+\left(y-1\right)^2+5\ge5\)
Dấu "=" xảy ra khi x=2;y=1
b) tương tự câu a
c)\(x^2+2y^2-6x-8y+2xy+5=x^2+2y^2+2x\left(y-3\right)-8y+5\)
\(=x^2+2x\left(y-3\right)+\left(y^2-6x+9\right)+\left(y^2-2x+1\right)-5\)
\(=x^2+2x\left(y-3\right)+\left(y-3\right)^2+\left(y-1\right)^2-5\)
\(=\left(x+y-3\right)^2+\left(y-1\right)^2-5\ge-5\)
Dấu "=" xảy ra khi x=2;y=1
a)\(2x^2+y^2+4x-2y-2xy+10=2x^2+y^2+4x-2y\left(x+1\right)+10\)
\(=y^2-2y\left(x+1\right)+2\left(x^2+2x+1\right)+8\)
\(=y^2-2y\left(x+1\right)+2\left(x+1\right)^2+8\)
\(=\left(y+x+1\right)^2+\left(x+1\right)^2+8\ge8\)
Dấu "=" xảy ra khi x=-1 và y=0
2C=4x^2+2x-10=((2x)^2+4x\(\dfrac{1}{2}\)+\(\dfrac{1}{4}\))-\(\dfrac{41}{4}\)
=\(\left(2x+\dfrac{1}{2}\right)^2\)-41/4\(\ge\dfrac{-41}{4}\)
=> C\(\ge\dfrac{-41}{8}\)
Vậy min C = \(\dfrac{-41}{8}\)khi x=\(\dfrac{-1}{4}\)
\(4A=4x^2+44y^2+24xy-8y+20=\left(2x\right)^2+2.2x.6y+\left(6y\right)^2+8y^2-8y+20=\left(2x+6y\right)^2+2\left(4y^2-4y+1\right)+18=\left(2x+6y\right)^2+2\left(2y-1\right)^2+18\ge18\)
ns thật vs c tôi ms đọc đề bài thôi đã ko hiểu j rồi ns chi đến lm giúp c. Sr nhé
a/ \(A=4x^2+y^2-4x-2y+3\)
\(=\left(4x^2-4x+1\right)+\left(y^2-2y+1\right)+1\)
\(=\left(2x-1\right)^2+\left(y-1\right)^2+1\)
Với mọi x, y ta có :
\(\left\{{}\begin{matrix}\left(2x-1\right)^2\ge0\\\left(y-1\right)^2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1\)
\(\Leftrightarrow A\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-1\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=1\end{matrix}\right.\)
Vậy...
b/ \(B=x^2+2y^2+2xy-2y\)
\(=\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)-1\)
\(=\left(x+y\right)^2+\left(y-1\right)^2-1\)
Với mọi x, y ta có :
\(\left\{{}\begin{matrix}\left(x+y\right)^2\ge0\\\left(y-1\right)^2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left(x+y\right)^2+\left(y-1\right)^2-1\ge0\)
\(\Leftrightarrow B\ge-1\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
Vậy..
a.\(A=4x^2+y^2-4x-2y+3\)
\(A=\left(4x^2-4x+1\right)+\left(y^2-2y+1\right)+1\)
\(A=\left(2x-1\right)^2+\left(y-1\right)^2+1\)
Vì \(\left(2x-1\right)^2\ge0\) và \(\left(y-1\right)^2\ge0\)
\(\Rightarrow\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1\)
\(\Rightarrow Min_A=1\) khi \(\left\{{}\begin{matrix}2x-1=0\\y-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=1\end{matrix}\right.\)
b.\(B=x^2+2y^2+2xy-2y\)
\(B=\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)-1\)
\(B=\left(x+y\right)^2+\left(y-1\right)^2-1\)
Vì \(\left(x+y\right)^2\ge0\) và \(\left(y-1\right)^2\ge0\)
\(\Rightarrow\left(x+y\right)^2+\left(y-1\right)^2-1\ge-1\)
\(\Rightarrow Min_B=-1\) khi \(\left\{{}\begin{matrix}x+y=0\\y-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-y\\y=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
Vậy \(Min_B=-1\) khi \(x=-1;y=1\)
\(\left(2x+1\right)^2-\left(x-1\right)^2\)
\(\Leftrightarrow\left(2x+1-x+1\right)\left(2x+1+x-1\right)\)
\(\Leftrightarrow\left(x+2\right)3x\)
TA có :
\(H=x^2+2xy+y^2-2x-2y=\left(x^2+y^2+1+2xy-2x-2y\right)-1=\left(x+y-1\right)^2-1\)
Vì \(\left(x+y-1\right)^2\ge0\) nên \(\left(x+y-1\right)^2-1\ge-1\)
Vậy GTNN của H là -1 khi x+y-1=0 => x+y = 1
BẢO HÙNG HÓM HỈNH LỚP TAO LÀM CHO CÒN TAO CHO Ý H
H=\(X^2+2XY+Y^2-2X-2Y\)
H=\(\left(X+Y\right)^2-2\left(X+Y\right)\)
H=\(\left(X+Y\right)^2\)\(-2.\left(X+Y\right).1+1\))-1
H=\(\left(X+Y-1\right)^2-1\)
VẬY GTNN LÀ -1
\(B=4x^2-4x+3=4x^2-4x+1+2=\left(2x-1\right)^2+2>=2\)
Dấu '=' xảy ra khi x=1/2