\(4x^2+y^2-4x-2y+3\)

b. B=

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2018

a/ \(A=4x^2+y^2-4x-2y+3\)

\(=\left(4x^2-4x+1\right)+\left(y^2-2y+1\right)+1\)

\(=\left(2x-1\right)^2+\left(y-1\right)^2+1\)

Với mọi x, y ta có :

\(\left\{{}\begin{matrix}\left(2x-1\right)^2\ge0\\\left(y-1\right)^2\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1\)

\(\Leftrightarrow A\ge1\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-1\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=1\end{matrix}\right.\)

Vậy...

b/ \(B=x^2+2y^2+2xy-2y\)

\(=\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)-1\)

\(=\left(x+y\right)^2+\left(y-1\right)^2-1\)

Với mọi x, y ta có :

\(\left\{{}\begin{matrix}\left(x+y\right)^2\ge0\\\left(y-1\right)^2\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left(x+y\right)^2+\left(y-1\right)^2-1\ge0\)

\(\Leftrightarrow B\ge-1\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

Vậy..

12 tháng 11 2018

a.\(A=4x^2+y^2-4x-2y+3\)

\(A=\left(4x^2-4x+1\right)+\left(y^2-2y+1\right)+1\)

\(A=\left(2x-1\right)^2+\left(y-1\right)^2+1\)

\(\left(2x-1\right)^2\ge0\)\(\left(y-1\right)^2\ge0\)

\(\Rightarrow\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1\)

\(\Rightarrow Min_A=1\) khi \(\left\{{}\begin{matrix}2x-1=0\\y-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=1\end{matrix}\right.\)

b.\(B=x^2+2y^2+2xy-2y\)

\(B=\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)-1\)

\(B=\left(x+y\right)^2+\left(y-1\right)^2-1\)

\(\left(x+y\right)^2\ge0\)\(\left(y-1\right)^2\ge0\)

\(\Rightarrow\left(x+y\right)^2+\left(y-1\right)^2-1\ge-1\)

\(\Rightarrow Min_B=-1\) khi \(\left\{{}\begin{matrix}x+y=0\\y-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-y\\y=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

Vậy \(Min_B=-1\) khi \(x=-1;y=1\)

13 tháng 8 2020

Bài làm:

a) Sửa đề:

\(A=4x-x^2=-\left(x^2-4x+4\right)+4\)

\(=-\left(x-2\right)^2+4\le4\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(-\left(x-2\right)^2=0\Rightarrow x=2\)

Vậy \(A_{Max}=4\Leftrightarrow x=2\)

b) \(B=-x^2-4x+5=-\left(x^2+4x+4\right)+9\)

\(=-\left(x+2\right)^2+9\le9\)

Dấu "=" xảy ra khi: \(-\left(x+2\right)^2=0\Rightarrow x=-2\)

Vậy \(B_{Max}=9\Leftrightarrow x=-2\)

c) \(C=-x^2-2y^2-2xy+2y\)

\(C=-\left(x^2+2xy+y^2\right)-\left(y^2-2y+1\right)+1\)

\(C=-\left(x+y\right)^2-\left(y-1\right)^2+1\le1\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}-\left(x+y\right)^2=0\\-\left(y-1\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)

Vậy \(C_{Max}=1\Leftrightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)

13 tháng 8 2020

a) Sửa : A = 4x - x2

A = -x2 + 4x - 4 + 4

A = -( x2 - 4x + 4 ) + 4

A = -( x - 2 )2 + 4

-( x - 2 )2 ≤ 0 ∀ x => -( x - 2 ) + 4 ≤ 4

Dấu " = " xảy ra <=> x - 2 = 0 => x = 2

Vậy AMax = 4 , đạt được khi x = 2

b) B =  -x2 - 4x + 5 = -x2 - 4x - 4 + 9 = -( x2 + 4x + 4 ) + 9 = -( x + 2 )2 + 9

-( x + 2 )2 ≤ 0 ∀ x => -( x + 2 )2 + 9 ≤ 9 

Dấu " = " xảy ra <=> x + 2 = 0 => x = -2

Vậy BMax = 9, đạt được khi x = -2

c) C = -x2 - 2y2 - 2xy + 2y

= ( -x2 - 2xy - y2 ) + ( -y2 + 2y -1 ) + 1

= -( x2 + 2xy + y2 ) - ( y2 - 2y + 1 ) + 1

= -( x + y )2 - ( y - 1 )2 + 1

\(\hept{\begin{cases}-\left(x+y\right)^2\le0\\-\left(y-1\right)^2\le0\end{cases}\Rightarrow}-\left(x+y\right)^2-\left(y-1\right)^2+1\le1\forall x,y\)

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x+y=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x+y=0\\y=1\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)

Vậy CMax = 1 , đạt được khi x = -1 ; y = 1

19 tháng 6 2018

a) Đặt  \(A=x^2+4x+7\)

\(A=\left(x^2+4x+4\right)+3\)

\(A=\left(x+2\right)^2+3\)

Mà  \(\left(x+2\right)^2\ge0\forall x\)

\(\Rightarrow A\ge3>0\)

b) Đặt  \(B=4x^2-4x+5\)

\(B=\left(4x^2-4x+1\right)+4\)

\(B=\left(2x-1\right)^2+4\)

Mà  \(\left(2x-1\right)^2\ge0\forall x\)

\(\Rightarrow B\ge4>0\)

c) Đặt  \(C=x^2+2y^2+2xy-2y+3\)

\(C=\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)+2\)

\(C=\left(x+y\right)^2+\left(y-1\right)^2+2\)

Mà  \(\left(x+y\right)^2\ge0\forall x;y\)

      \(\left(y-1\right)^2\ge0\forall y\)

\(\Rightarrow C\ge2>0\)

hoc tot de lam lien doi nho chua.

7 tháng 4 2018

\(A=2x^2+y^2-2xy-2x+3\)

\(A=\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+2\)

\(A=\left(x-y\right)^2+\left(x-1\right)^2+2\)

Mà \(\left(x-y\right)^2\ge0\forall x;y\)

       \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow A\ge2\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}x-y=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=1\end{cases}}\)

Vậy Min A = 2 khi x=y=1

22 tháng 10 2021

\(1,a,A=x^2-6x+25\)

\(=x^2-2.x.3+9-9+25\)

\(=\left(x-3\right)^2+16\)

Ta có :

\(\left(x-3\right)^2\ge0\)Với mọi x

\(\Rightarrow\left(x-3\right)^2+16\ge16\)

Hay \(A\ge16\)

\(\Rightarrow A_{min}=16\)

\(\Leftrightarrow x=3\)

22 tháng 10 2021

\(b,B=4x^2+4x-2\)

\(B=4x^2+4x+1-3\)

\(B=\left(4x^2+4x+1\right)-3\)

\(B=\left(2x+1\right)^2-3\)

Ta có : 

\(\left(2x+1\right)^2\ge0\)với mọi x

\(\Rightarrow\left(2x+1\right)^2-3\ge-3\)

\(\Leftrightarrow B\ge-3\)

\(\Rightarrow B_{min}=-3\)

\(\Leftrightarrow x=-\frac{1}{2}\)

7 tháng 9 2018

\(A=x^2+2y^2-2xy+4x-2y+12\)

\(A=\left(x^2-2xy+y^2\right)+y^2+4x-2y+12\)

\(A=\left[\left(x-y\right)^2+2\left(x-y\right).2+4\right]+\left(y^2+2y+1\right)+7\)

\(A=\left(x-y+2\right)^2+\left(y+1\right)^2+7\)

Mà  \(\left(x-y+2\right)^2\ge0\forall x;y\)

      \(\left(y+1\right)^2\ge0\forall y\)

\(\Rightarrow A\ge7\)

Dấu "=" xảy ra khi :  \(\hept{\begin{cases}x-y+2=0\\y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=-1\end{cases}}\)

Vậy  \(A_{Min}=7\Leftrightarrow\left(x;y\right)=\left(-3;-1\right)\)

Câu 1: 

a: \(C=a^2+b^2=\left(a+b\right)^2-2ab=23^2-2\cdot132=265\)

b: \(D=x^3+y^3+3xy\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\)

\(=1-3xy+3xy=1\)

14 tháng 3 2018

<=> x^2 + 2x(y+2) + y^2+4y+4+y^2+2y+1-4

<=> x^2 + 2x(y+2) + (y+2)^2 + (y+1)^2 - 4

<=> (x+y+2)^2 + (y+1)^2 - 4 >= -4

min = -4 khi y = -1 , x = -1

14 tháng 3 2018

\(=\left(x+y+2\right)^2+\left(y+1\right)^2-4\)

Vì   \(\left(x+y+2\right)^2\ge0\forall x\)  ,     \(\left(y+1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+y+2\right)^2+\left(y+1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+y+2\right)^2+\left(y+1\right)^2-4\ge-4\forall x\)

Vậy GTNN của A=-4 Dấu bằng xảy ra khi

\(\Rightarrow\hept{\begin{cases}\left(x+y+2\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2-y\\y=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=-1\end{cases}}\)

Vậy GTNN của A=-4 khi và chỉ khi x=-3 , y=-1