Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(Q=-x^2-y^2+4x-4y+2=-\left(x^2+y^2-4x+4y-2\right)\)
\(=-\left(x^2-4x+4+y^2+4y+4\right)+10\)
\(=-\left[\left(x-2\right)^2+\left(y+2\right)^2\right]+10\le10\forall x,y\)
Vậy MaxQ=10 khi x=2, y=-2
b) +Ta có: \(A=-x^2-6x+5=-\left(x^2+6x-5\right)=-\left(x^2+6x+9-14\right)\)
\(=-\left(x^2+6x+9\right)+14=-\left(x+3\right)^2+14\le14\forall x\)
Vậy MaxA=14 khi x=-3
+Ta có: \(B=-4x^2-9y^2-4x+6y+3=-\left(4x^2+9y^2+4x-6y-3\right)\)
\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)
\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2\right]+5\le5\forall x,y\)
Vậy MaxB=5 khi x=-1/2, y=1/3
c) Ta có: \(P=x^2+y^2-2x+6y+12=x^2-2x+1+y^2+6y+9+2\)
\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)
Vậy MinP=2 khi x=1, y=-3
\(A=x^2-6x+10=\left(x-3\right)^2+1\ge1\)
\(\Rightarrow A_{min}=1\Leftrightarrow x=3\)
\(B=4x^2-4x+25=\left(2x-1\right)^2+24\ge24\)
\(\Rightarrow B_{min}=24\Leftrightarrow x=\frac{1}{2}\)
\(C=3x^2+9x+12=3\left(x+\frac{3}{2}\right)^2+\frac{21}{4}\ge\frac{21}{4}\)
\(\Rightarrow C_{min}=\frac{21}{4}\Leftrightarrow x=\frac{-3}{2}\)
1.
$A=x^2+8x+17=(x^2+8x+16)+1=(x+4)^2+1$
Vì $(x+4)^2\geq 0$ với mọi $x$
$\Rightarrow A\geq 0+1=1$
Vậy $A_{\min}=1$. Giá trị này đạt tại $x+4=0\Leftrightarrow x=-4$
--------------------
2.
$B=x^2-4x+7=(x^2-4x+4)+3=(x-2)^2+3$
Vì $(x-2)^2\geq 0$ với mọi $x$
$\Rightarrow B\geq 0+3=3$. Vậy $B_{\min}=3$. Giá trị này đạt được khi $x-2=0\Leftrightarrow x=2$
3.
$C=3x^2+6x+1=3(x^2+2x+1)-2=3(x+1)^2-2$
Vì $(x+1)^2\geq 0$ với mọi $x$
$\Rightarrow C\geq 3.0-2=-2$.
Vậy $C_{\min}=-2$. Giá trị này đạt được khi $x+1=0\Leftrightarrow x=-1$
4.
$D=-4x^2-4x$
$-D=4x^2+4x=(4x^2+4x+1)-1=(2x+1)^2-1$
Vì $(2x+1)^2\geq 0$ với mọi $x$
$\Rightarrow -D\geq 0-1=-1$
$\Rightarrow D\leq 1$
Vậy $D_{\max}=1$. Giá trị này đạt tại $2x+1=0\Leftrightarrow x=\frac{-1}{2}$
`A=(2x)^2+2.2x.1+1^2+1=(2x+1)^2+1`
`=> A_(min)=1 <=>x=-1/2`
`B=(\sqrt2x)^2-2.\sqrt2 x . \sqrt2/2 + (\sqrt2/2)^2 + 1/2`
`=(\sqrt2x-\sqrt2/2)^2+1/2`
`=> B_(min)=1/2 <=> x=1/2`
`C=-(x^2-2.x.3+3^2+6)=-(x-3)^2-6`
`=> C_(max)=-6 <=> x=3`
a,\(x^2+4x+7=x^2+4x+4+3=\left(x+2\right)^2+3\ge3\)
Dấu = xảy ra \(< =>x+2=0< =>x=-2\)
Vậy \(A_{min}=3\)khi \(x=-2\)
b,\(4x^2+4x+6=\left(2x\right)^2+4x+1+5=\left(2x+1\right)^2+5\ge5\)
Dấu = xảy ra \(< =>2x+1=0< =>x=-\frac{1}{2}\)
Vậy \(B_{min}=5\)khi \(x=-\frac{1}{2}\)
c,\(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu = xảy ra \(< =>x+\frac{1}{2}=0< =>x=-\frac{1}{2}\)
Vậy \(C_{min}=\frac{3}{4}\)khi \(x=-\frac{1}{2}\)
d,\(2x^2-6x=2\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{2}=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)
Dấu = xảy ra \(< =>x-\frac{3}{2}=0< =>x=\frac{3}{2}\)
Vậy \(D_{min}=-\frac{9}{2}\)khi \(x=\frac{3}{2}\)
\(A=x^2-6x+12=\left(x^2-6x+9\right)+3=\left(x-3\right)^2+3\)
Có: \(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2+3\ge3\)
Dấu ''='' xảy ra khi x = 3
Vậy MinA = 3 ⇔ x = 3
--
\(B=4x^2+4x+4=\left(4x^2+4x+1\right)+3=\left(2x+1\right)^2+3\)
Vì: \(\left(2x+1\right)^2\ge0\Rightarrow\left(2x+1\right)^2+3\ge3\)
Dấu ''='' xảy ra khi 2x + 1 = 0 \(\Leftrightarrow x=-\dfrac{1}{2}\)
Vậy MinB = 3 ⇔ x = \(-\dfrac{1}{2}\)