Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề:
\(C=x^2-4xy+5y^2-10y+6\)
\(C=\left(x^2-4xy+4y^2\right)+\left(y^2-10y+25\right)-19\)
\(C=\left(x-2y\right)^2+\left(y-5\right)^2-19\ge-19\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-2y\right)^2=0\\\left(y-5\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2y\\y=5\end{cases}}\Rightarrow\hept{\begin{cases}x=10\\y=5\end{cases}}\)
Vậy \(Min_C=-19\Leftrightarrow\hept{\begin{cases}x=10\\y=5\end{cases}}\)
\(D=x^2-2xy+2y^2-2x-10y+20\)
\(D=\left(x-y\right)^2-2\left(x-y\right)+1+\left(y^2-12y+36\right)-17\)
\(D=\left(x-y-1\right)^2+\left(y-6\right)^2-17\ge-17\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-y-1\right)^2=0\\\left(y-6\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=y+1\\y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=7\\y=6\end{cases}}\)
Vậy \(Min_D=-17\Leftrightarrow\hept{\begin{cases}x=7\\y=6\end{cases}}\)
\(4x^2+y^2-2xy-2x+2y=\left(x^2+y^2+1-2xy-2x+2y\right)+3x^2.\)
\(=\left(x-y-1\right)^2+3x^2\ge0\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-y-1\right)^2=0\\3x^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}\)
\(D=x^3\left(x-y\right)-y^3\left(x-y\right)+\left(x^2y^2-8xy+16\right)+1984\)
\(D=\left(x-y\right)\left(x^3-y^3\right)+\left(xy-4\right)^2+1984\)
\(D=\left(x-y\right)^2\left(x^2+xy+y^2\right)+\left(xy-4\right)^2+1984\)
\(D=\left(x-y\right)^2\left[\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}\right]+\left(xy-4\right)^2+1984\ge1984\)
\(D_{min}=1984\) khi \(x=y=\pm2\)
a) = 9(x2 - 2.x/2.9 + 1/324) - 9/324 +5
GTNN A = 4,97
b) = (2x +y)2 + y2 + 2018
GTNN B = 2018 khi x=0;y=0
c) = -4(x2 - 2.3x/ 4.2 + 9/16) +9/16 +10
GTLN C = 169/16
d) = -(x-y)2 - (2x +1) +1 + 2016
GTLN D = 2017
(trg bn cho bài khó dữ z, làm hại cả não tui)
\(D=3y^2-2y+10=3\left(y^2-\frac{2}{3}y+\frac{10}{3}\right)=3\left(y^2-\frac{2}{3}y+\frac{1}{9}\right)+\frac{29}{3}\)
\(=3\left(y-\frac{1}{3}\right)^2+\frac{29}{3}\ge\frac{29}{3}\)
Dấu \(=\)khi \(y-\frac{1}{3}=0\Leftrightarrow y=\frac{1}{3}\).