Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Bunhiacopxki ta có :
\(\left(3\sqrt{x-1}+4\sqrt{5-x}\right)^2\le\left(3^2+4^2\right)\left(x-1+5-x\right)\)
\(\Leftrightarrow\left(3\sqrt{x-1}+4\sqrt{5-x}\right)^2\le100\)
\(\Leftrightarrow f\left(x\right)\le10\)
Dấu "=" xảy ra :
\(\Leftrightarrow\frac{\sqrt{x-1}}{3}=\frac{\sqrt{5-x}}{4}\)
Vậy...
1) Áp dụng BĐT Bunhiacopski
P = \(6\sqrt{x-1}+8\sqrt{3-x}\le\sqrt{\left(6^2+8^2\right)\left(x-1+3-x\right)}=10\sqrt{2}\)
Vậy Min P = \(10\sqrt{2}\) khi x = 43/25
2) a) \(\Rightarrow A-5=y-2x=4y.\dfrac{1}{4}+\left(-6x\right).\dfrac{1}{3}\)
Áp dụng BĐT bunhiacopski
\(\Rightarrow\left(A-5\right)^2=\left(4y.\dfrac{1}{4}+\left(-6x\right).\dfrac{1}{3}\right)^2\) \(\le\left(16y^2+36x^2\right)\left(\dfrac{1}{16}+\dfrac{1}{9}\right)=\dfrac{25}{16}\)
\(\Rightarrow-\dfrac{5}{4}\le A-5\le\dfrac{5}{4}\Rightarrow\dfrac{15}{4}\le A\le\dfrac{25}{4}\)
...........
b) tương tự
+ ĐKXĐ : \(\left\{{}\begin{matrix}x\ge-3\\y\ge-4\end{matrix}\right.\)
\(gt\Rightarrow x+y=6\left(\sqrt{x+3}+\sqrt{4+y}\right)\le6\sqrt{2\left(x+y+7\right)}\)
\(\Rightarrow\left(x+y\right)^2\le72\left(x+y+7\right)\)
\(\Rightarrow\left(x+y\right)^2-72\left(x+y\right)-504\le0\)
\(\Rightarrow\left(x+y-36\right)^2\le1800\Rightarrow P\le36+30\sqrt{2}\)
max \(P=36+30\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+3=y+4\\x+y=36+30\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{37}{2}+15\sqrt{2}\\y=\frac{35}{2}+15\sqrt{2}\end{matrix}\right.\)
+ \(x+y=6\left(\sqrt{x+3}+\sqrt{y+4}\right)\)
\(\Rightarrow\left(x+y\right)^2=36\left(x+y+7+2\sqrt{\left(x+3\right)\left(y+4\right)}\right)\)
\(\Rightarrow\left(x+y\right)^2-36\left(x+y\right)-252=72\sqrt{\left(x+3\right)\left(y+4\right)}\ge0\)
\(\Rightarrow\left(x+y-42\right)\left(x+y+6\right)\ge0\Rightarrow x+y\ge42\)
Min \(P=42\Leftrightarrow\left\{{}\begin{matrix}\sqrt{\left(x+3\right)\left(y+4\right)}=0\\x+y=42\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-3\\y=45\end{matrix}\right.\\\left\{{}\begin{matrix}x=46\\y=-4\end{matrix}\right.\end{matrix}\right.\)
1) \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\)
Vậy: MinA là 1 khi x=0
2) \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+3\ge3\)
\(\Rightarrow\dfrac{1}{\sqrt{x}+3}\le\dfrac{1}{3}\)
MaxB là \(\dfrac{1}{3}\) khi x=0
ĐKXĐ: \(-3\le x\le6\)
Gọi A là tên hàm số trên
\(A=\sqrt{x+3}+\sqrt{6-x}\ge\sqrt{x+3+6-x}=3\)
\(\Rightarrow A_{min}=3\) khi \(\left[{}\begin{matrix}x=-3\\x=6\end{matrix}\right.\)
\(A\le\sqrt{\left(1+1\right)\left(x+3\right)\left(6-x\right)}=3\sqrt{2}\)
\(\Rightarrow A_{max}=3\sqrt{2}\) khi \(x+3=6-x\Leftrightarrow x=\frac{3}{2}\)
Đặt A = \(\sqrt{x+3}+\sqrt{6-x}\) ĐKXĐ: \(-3\le x\le6\)
\(A^2=x+3+6-x+2\sqrt{\left(x+3\right)\left(6-x\right)}\)
\(=9+2\sqrt{\left(x+3\right)\left(6-x\right)}\ge9\)
\(\Rightarrow A\ge3\)
Vậy min A = 3 ⇔\(\left[{}\begin{matrix}x=-3\\x=6\end{matrix}\right.\)(thỏa mãn)
Mặt khác \(A^2=9+2\sqrt{\left(x+3\right)\left(6-x\right)}\le9+x+3+6-x=18\)
\(\Rightarrow A\le3\sqrt{2}\)
Vậy maxA = \(3\sqrt{2}\)⇔\(x+3=6-x\Leftrightarrow x=\frac{3}{2}\)(thỏa mãn)
Lời giải:
ĐKXĐ: \(x\leq \frac{3}{2}\)
Hàm số chỉ có min chứ không có max bạn nhé.
\(y=\sqrt{3-2x}+\sqrt{5-2x}\)
\(\Rightarrow y^2=3-2x+5-2x+2\sqrt{(3-2x)(5-2x)}\)
\(=8-4x+2\sqrt{(3-2x)(5-2x)}\)
Ta thấy:
Vì \(x\leq \frac{3}{2}\Rightarrow 8-4x\geq 8-4.\frac{3}{2}=2\)
\(2\sqrt{(3-2x)(5-2x)}\geq 0\) (theo tính chất căn bậc 2)
\(\Rightarrow y^2=8-4x+2\sqrt{(3-2x)(5-2x)}\geq 2\)
\(\Rightarrow y\geq \sqrt{2}\) (do $y$ không âm)
Vậy $y_{\min}=\sqrt{2}$ khi $x=\frac{3}{2}$
Em mới học dạng này sơ sơ thôi nên không rành lắm, mọi người check giúp ạ.
ĐK x =< 3/2
Xét \(x_1< x_2\le\frac{3}{2}\)
\(y=f\left(x\right)=\sqrt{3-2x}+\sqrt{5-2x}\)
Ta có: \(f\left(x_1\right)-f\left(x_2\right)=\left(\sqrt{3-2x_1}-\sqrt{3-2x_2}\right)+\left(\sqrt{5-2x_1}-\sqrt{5-2x_2}\right)>0\)(do dễ thấy(em lười viết ra quá) rằng mỗi cái ngoặc đều lớn hơn 0)
Do đó f(x1) > f(x2). Do vậy x càng tăng thì giá trị f(x) càng nhỏ hay y đạt cực tiểu tại x = 3/2. Vậy \(y_{min}=\sqrt{3-2.\frac{3}{2}}+\sqrt{5-2.\frac{3}{2}}=\sqrt{2}\)
Đẳng thức xảy ra khi x = 3/2
Vậy...
ĐKXĐ: \(-3\le x\le6\)
\(A=\sqrt{x+3}+\sqrt{6-x}\ge\sqrt{x+3+6-x}=3\)
\(\Rightarrow A_{min}=3\) khi \(\left[{}\begin{matrix}x=-3\\x=6\end{matrix}\right.\)
\(A\le\sqrt{\left(1+1\right)\left(x+3\right)\left(6-x\right)}=3\sqrt{2}\)
\(\Rightarrow A_{max}=3\sqrt{2}\) khi \(x+3=6-x\Leftrightarrow x=\frac{3}{2}\)
max là 3\2
min là 1\2