\(\frac{-4x^2+4x}{15}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2019

 Theo bài ra ta có:

      -4x2+4x = (-1).4x2 + 4x = 4x.(-x+1)

        => 4x.(-x+1)/15 có GTLN

        Vì  4x.(-x+1)/15 có GTLN

       => 4x.(-x+1)  có GTLN  => x nhỏ nhất ; -x lớn nhất

    Do đó, x =1 hoăc =0

=> Biểu thức trên có GTLN là 0

                   

11 tháng 11 2019

Ta có: \(\frac{-4x^2+4x}{15}\)

\(=\frac{-4x^2+4x-1+1}{15}\)

\(=\frac{-\left(2x-1\right)^2+1}{15}\)

\(=\frac{-\left(2x-1\right)^2}{15}+\frac{1}{15}\le\frac{1}{15}\forall x\)

Vậy GTLN của \(\frac{-4x^2+4x}{15}\)là \(\frac{1}{15}\)\(\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)

11 tháng 12 2016

Ta có: A=\(\frac{7}{2x^2-6x+100}=\frac{7}{2x^2-6x+4.5+95.5}\)

              =\(\frac{7}{2\left(x^2-3x+2.25\right)+95.5}=\frac{7}{2\left(x-1.5\right)^2+95.5}\)

              Ta có: Để phân số  \(\frac{7}{2\left(x-1.5\right)^2+95.5}\)lớn nhất <=> \(2\left(x-1.5\right)^2+95.5\)nhỏ nhất
Ta có: 2(x-1.5)^2 lớn hơn hoặc bằng 0 với mọi x thuộc R
=> \(2\left(x-1.5\right)^2+95.5\)lớn hơn hoặc bằng 95.5 với mọi x thuộc R
Dấu"=" xảy ra khi \(2\left(x-1.5\right)^2+95.5\)=95.5
<=>  2(x-1.5)^2=0
<=>  x-1.5=0
<=> x=1.5
Vậy GTLN của biểu thức A là A=\(\frac{7}{95.5}=\frac{14}{191}\)tại x=1.5
Câu b tương tự

10 tháng 2 2019

\(A=\frac{4x^2-12x+15}{x^2-3x+3}=4+\frac{3}{x^2-3x+3}=4+\frac{3}{\left(x-\frac{3}{2}\right)^2+\frac{3}{4}}\le8\)

dau '=' xay ra khi \(x=\frac{3}{2}\)

\(B=\frac{4x^2-8x+12}{x^2-2x+5}=4-\frac{8}{x^2-2x+5}=4-\frac{8}{\left(x-1\right)^2+4}\le2\)

dau '=' xay ra khi \(x=1\)

1 tháng 4 2019

Để B đạt GTLN thì \(4x^2+4x+3\) phải đạt GTNN

Ta có: \(4x^2+4x+3=4x^2+4x+1+2=\left(2x+1\right)^2+2\ge2\forall x\)

=> GTNN của 4x2 +4x +3 = 2 tại x = -1/2

=> GTLN của B = 3/2 tại x = -1/2

=.= hk tốt!!

25 tháng 8 2016

1/ \(A=4x^2-12x+15=\left(2x\right)^2-2.3.2x+3^2+6=\left(2x-3\right)^2+6\ge6\)

Đẳng thức xảy ra khi: \(2x-3=0\Rightarrow2x=3\Rightarrow x=3:2\Rightarrow x=1,5\)

Vậy giá trị nhỏ nhất của A là 6 khi x = 1,5

2a/ \(B=-x^2+4x+4=-\left(x^2-4x-4\right)=-\left(x^2-2.2x+2^2-8\right)=-\left[\left(x-2\right)^2-8\right]\)

\(\Rightarrow B=-\left(x-2\right)^2+8\le8\)

Đẳng thức xảy ra khi: \(x-2=0\Rightarrow x=2\)

Vậy giá trị lớn nhất của B là 8 khi x = 2

2b/ \(C=4-16x^2-8x=-16x^2-8x+4=-\left(16x^2+8x-4\right)=-\left[\left(4x\right)^2+2.4x+1-5\right]\)

\(\Rightarrow C=-\left[\left(4x+1\right)^2-5\right]=-\left(4x+1\right)^2+5\le5\)

Đẳng thức xảy ra khi: 4x + 1 = 0  => x = -0,25

Vậy giá trị lớn nhất của C là 5 khi x = -0,25

30 tháng 6 2017

\(\frac{x^2-4x-4}{x^2-4x+5}=\frac{x^2-4x+5}{x^2-4x+5}-\frac{9}{x^2-4x+5}=1-\frac{9}{\left(x^2-4x+4\right)+1}=1-\frac{9}{\left(x-2\right)^2+1}\)

Vì \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+1\ge1\Rightarrow\frac{9}{\left(x-2\right)^2+1}\le9\Rightarrow1-\frac{9}{\left(x-2\right)^2+1}\ge-8\)

Dấu "=" xảy ra khi (x-2)2=0 => x-2=0 => x=2

Vậy gtnn của biểu thức là -8 khi x=2

đề yêu cầu tìm cả max và min hay chỉ 1 là được?

2 tháng 12 2017

Tấm vải thứ 2 dài là :
                                 85 + 35 = 120 ( m )
Cả 3 tấm vải dài :
                                 85 + 120 + 120 = 325 ( m )
                                                     Đ/S : 325 m

chúc cậu hok tốt @_@

23 tháng 12 2015

Ta có

\(\frac{4x+3}{x^2+1}=\frac{-\left(x^2+1\right)+x^2+4x+4}{x^2+1}=-1+\frac{\left(x+2\right)^2}{x^2+1}\ge-1\)

Dấu ''='' xảy ra <=>x=-2

Ta có

\(\frac{4x+3}{x^2+1}=\frac{4\left(x^2+1\right)-4x^2+4x-1}{x^2+1}=4-\frac{\left(2x-1\right)^2}{x^2+1}\le4\)

Dấu ''='' xảy ra <=>x=1/2