\(\frac{7}{2x^2-6x+100}\)

tìm GTLN của

B= <...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2016

Ta có: A=\(\frac{7}{2x^2-6x+100}=\frac{7}{2x^2-6x+4.5+95.5}\)

              =\(\frac{7}{2\left(x^2-3x+2.25\right)+95.5}=\frac{7}{2\left(x-1.5\right)^2+95.5}\)

              Ta có: Để phân số  \(\frac{7}{2\left(x-1.5\right)^2+95.5}\)lớn nhất <=> \(2\left(x-1.5\right)^2+95.5\)nhỏ nhất
Ta có: 2(x-1.5)^2 lớn hơn hoặc bằng 0 với mọi x thuộc R
=> \(2\left(x-1.5\right)^2+95.5\)lớn hơn hoặc bằng 95.5 với mọi x thuộc R
Dấu"=" xảy ra khi \(2\left(x-1.5\right)^2+95.5\)=95.5
<=>  2(x-1.5)^2=0
<=>  x-1.5=0
<=> x=1.5
Vậy GTLN của biểu thức A là A=\(\frac{7}{95.5}=\frac{14}{191}\)tại x=1.5
Câu b tương tự

10 tháng 2 2019

\(A=\frac{4x^2-12x+15}{x^2-3x+3}=4+\frac{3}{x^2-3x+3}=4+\frac{3}{\left(x-\frac{3}{2}\right)^2+\frac{3}{4}}\le8\)

dau '=' xay ra khi \(x=\frac{3}{2}\)

\(B=\frac{4x^2-8x+12}{x^2-2x+5}=4-\frac{8}{x^2-2x+5}=4-\frac{8}{\left(x-1\right)^2+4}\le2\)

dau '=' xay ra khi \(x=1\)

2 tháng 7 2017

a) MTC : \(\left(x+1\right)\left(x^2-x+1\right)\)

Quy đồng :

\(\frac{x-1}{x^3+1}=\frac{x-1}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(\frac{2x}{x^2-x+1}=\frac{2x\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(\frac{2}{x+1}=\frac{2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

b ) MTC : \(10x\left(2y-x\right)\left(2y+x\right)\)

\(\frac{7}{5x}=\frac{7.2.\left(2y-x\right)\left(2y+x\right)}{10x\left(2y-x\right)\left(2y+x\right)}\)

\(\frac{4}{x-2y}=\frac{-4.10x.\left(2y+x\right)}{10x\left(2y-x\right)\left(2y+x\right)}=\frac{-40x\left(2y+x\right)}{10x\left(2y-x\right)\left(2y+x\right)}\)

\(\frac{x-y}{8y^2-2x^2}=\frac{x-y}{2\left(4y^2-x^2\right)}=\frac{x-y}{2\left(2y-x\right)\left(2y+x\right)}=\frac{5x\left(x-y\right)}{10x\left(2y-x\right)\left(2y+x\right)}\)

c ) MTC : \(\left(x+2\right)^3\)

\(\frac{6x^2}{x^3+6x^2+12x+8}=\frac{6x^2}{\left(x+2\right)^3}\)

\(\frac{3x}{x^2+4x+4}=\frac{3x}{\left(x+2\right)^2}=\frac{3x\left(x+2\right)}{\left(x+2\right)^3}\)

\(\frac{2}{2x+4}=\frac{1}{x+2}=\frac{\left(x+2\right)^2}{\left(x+2\right)^3}\)

23 tháng 6 2017

a, Để A đạt GTLN thì \(x^2-6x+1\) đạt GTNN.

\(x^2-2x3+3^2-8\)

\(\left(x-3\right)^2-8\ge-8\)

Dấu "=" xảy ra khi \(x-3=0\)\(\Rightarrow\)\(x=3\)

Vậy GTNN của \(x^2-6x+1\)là -8 khi x=3

Thay x = 3 vào biểu thức a ta được:

\(A=\frac{5}{9-18+1}=-\frac{5}{8}\)

Vậy GTLN của A là -5/8

7 tháng 8 2018

vì tử thức là 2 không đổi , để biểu thức A có giá trị khi mẫu thức : \(x^2-6x+1\)có GTLN                                                                     mà : \(x^2-6x+1=[(x^2+2x\frac{6}{2}+\frac{36}{4})-\frac{36}{4}+1]=[(x+\frac{6}{2})^2-8]\)                                                                                             =\(-8+(x+\frac{6}{2})^2\)vì \((x-\frac{6}{2})^2\ge0\forall x\)\(\Rightarrow x^2-6x+1=-8+(x+\frac{6}{2})^2\le-8\)            vậy GTNN  \(x^2-6x+1=-8\)đạt được khi \((x+\frac{6}{2})^2=\Rightarrow x=-\frac{6}{2}\)\(\Rightarrow A\ge-8\)vậy MAX\((A)=-8\)đạt đươc \(\Leftrightarrow x=-\frac{6}{2}\)

13 tháng 6 2019

A= 9- 2.(x^2-2x+ 1)= 9- 2.(x-1)2

Lại có (x-1)2 \(\ge\)0 => A\(\le\)

Vậy max A =9 <=> x-1=0 => x=1

b, B= 139/3-((x.√3)2+2.√3.2/(√3)+4/3)

= 139/3-(√3.x+2/√3)2

Lại có (√3.x+2/√3)2\(\ge\)0 => B\(\le\)139/3

Vậy maxB = 139/3 <=> x = -2/3

c,C= 25-2(x^2-2.x.3+9)= 25- 2(x-3)2

Laạạiại ccó (x-3)2\(\ge\)0

=> C\(\le\)25

Để max C = 25 <=> x-3= 0 <=> x=3

d, D=2163-( x^2-2.x.12+144)= 2163-(x-12)2

Lại có (x-12)2\(\ge\)

=> D\(\le\)2163

Để max D = 2163 <=> x-12 = 0 <=> x= 12

13 tháng 6 2019

hình như bạn nhầm đề à

28 tháng 3 2018

giải câu b trc nha

= ((x-1)^2+2009]/x^2=(x-1)^2/x^2+2009

vậy min=2009 khi x=1

28 tháng 3 2018

https://olm.vn//hoi-dap/question/57101.html     

Tham khảo đây nhá bạn