Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.
\(P=\dfrac{\sqrt{x-2018}}{x+2}+\dfrac{\sqrt{x-2019}}{x}\)\(P=\dfrac{\sqrt{\left(x-2018\right).2020}}{\left(x+2\right)\sqrt{2020}}+\dfrac{\sqrt{\left(x-2019\right).2019}}{\sqrt{2019}.x}\)
Áp dụng BĐT AM-GM:
\(\sqrt{\left(x-2018\right).2020}\le\dfrac{1}{2}\left(x-2018+2020\right)=\dfrac{1}{2}\left(x+2\right)\)
\(\sqrt{\left(x-2019\right).2019}\le\dfrac{1}{2}\left(x-2019+2019\right)=\dfrac{1}{2}x\)
\(\Rightarrow P\le\dfrac{x+2}{2\sqrt{2020}\left(x+2\right)}+\dfrac{x}{2\sqrt{2019}.x}=\dfrac{1}{2\sqrt{2020}}+\dfrac{1}{2\sqrt{2019}}\)
\("="\Leftrightarrow x=4038\)
không phải bơ đâu, oan cho tớ quá :>
27/11 thi nên ít lên, với cả chị tớ cũng không cho chat :>
lấy mật khẩu của tớ vô đọc góc ib là biết mà :>
Tất cả 3 bài này đều chung một dạng, bậc tử lớn hơn bậc mẫu nên đều không tồn tại GTLN mà chỉ tồn tại GTNN. Cách tìm thường là chia tử cho mẫu rồi khéo léo thêm bớt để sử dụng BĐT Cô-si
a) \(P=\dfrac{x+4}{4\sqrt{x}}=\dfrac{\sqrt{x}}{4}+\dfrac{1}{\sqrt{x}}\ge2\sqrt{\dfrac{\sqrt{x}}{4}\dfrac{1}{\sqrt{x}}}=2.\dfrac{1}{2}=1\)
\(\Rightarrow P_{min}=1\) khi \(\dfrac{\sqrt{x}}{4}=\dfrac{1}{\sqrt{x}}\Leftrightarrow x=4\)
b) \(P=\dfrac{x+3}{2\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{2}+\dfrac{2}{\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{2}+\dfrac{2}{\sqrt{x}+1}-1\)
\(\Rightarrow P\ge2\sqrt{\dfrac{\left(\sqrt{x}+1\right)}{2}\dfrac{2}{\left(\sqrt{x}+1\right)}}-1=2-1=1\)
\(\Rightarrow P_{min}=1\) khi \(\dfrac{\sqrt{x}+1}{2}=\dfrac{2}{\sqrt{x}+1}\Leftrightarrow x=1\)
c)ĐKXĐ: \(x\ge0\Rightarrow\) \(P=\dfrac{x-4}{\sqrt{x}+1}=\sqrt{x}-1-\dfrac{3}{\sqrt{x}+1}\)
\(P_{min}\) khi \(\dfrac{3}{\sqrt{x}+1}\) đạt max \(\Rightarrow\sqrt{x}+1\) đạt min, mà \(\sqrt{x}+1\ge1\) \(\forall x\ge0\) , dấu "=" xảy ra khi \(x=0\)
\(\Rightarrow P_{min}=-4\) khi \(x=0\)
TXĐ: \(x\ge0\)
a/ Đặt \(\sqrt{x}=t\ge0\Rightarrow P=\dfrac{t-1}{t^2+2}\Leftrightarrow Pt^2-t+2P+1=0\) (1)
Ta tìm điều kiện P để (1) có ít nhất một nghiệm không âm
(*) \(\Delta\ge0\Rightarrow1-4P\left(2P+1\right)\ge0\Rightarrow-8P^2-4P+1\ge0\)
\(\Rightarrow\dfrac{-1-\sqrt{3}}{4}\le P\le\dfrac{-1+\sqrt{3}}{4}\)
(**)Để phương trình có 2 nghiệm đều âm \(\left\{{}\begin{matrix}\dfrac{2P+1}{P}>0\\\dfrac{1}{P}< 0\end{matrix}\right.\) \(\Rightarrow P< \dfrac{-1}{2}\)
\(\Rightarrow\) Để có ít nhất một nghiệm không âm thì \(P\ge\dfrac{-1}{2}\)
Kết hợp (*) và (**) ta được: \(\dfrac{-1}{2}\le P\le\dfrac{-1+\sqrt{3}}{4}\)
Vậy \(P_{min}=\dfrac{-1}{2}\) và \(P_{max}=\dfrac{-1+\sqrt{3}}{4}\)
b/ TXĐ: \(x\ge0\)
\(P=1-\dfrac{1}{x+\sqrt{x}+1}\)
Để \(P_{min}\Rightarrow\dfrac{1}{x+\sqrt{x}+1}\) đạt max, mà \(x+\sqrt{x}+1\ge1\) \(\forall x\ge0\)
\(\Rightarrow\dfrac{1}{x+\sqrt{x}+1}\le1\) \(\forall x\ge0\) \(\Rightarrow P_{min}=1-1=0\)
Để \(P_{max}\Rightarrow\dfrac{1}{x+\sqrt{x}+1}\) đạt min \(\Rightarrow x+\sqrt{x}+1\) đạt max
Mà giá trị max của \(x+\sqrt{x}+1\) không tồn tại \(\Rightarrow P_{max}\) không tồn tại
Để tìm GTLN của biểu thức P, bạn phỉa tìm giá trị của biểu thức Q:
Q= \(\left(\dfrac{1}{\sqrt{x}-2}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x+1}}\right)\)
Q= \(\dfrac{\sqrt{x}-\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}:\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
Q= \(\dfrac{2}{\sqrt{x}\left(\sqrt{x}-2\right)}:\dfrac{\left|x\right|-1-\left|x\right|+4}{\left(\sqrt{x}-2\right)}\)
Q= \(\dfrac{2}{\sqrt{x}\left(\sqrt{x}-2\right)}:\dfrac{3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
Q= \(\dfrac{2}{\sqrt{x}\left(\sqrt{x}-2\right)}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{3}\)
Q= \(\dfrac{2\left(\sqrt{x}+1\right)}{3\sqrt{x}}\) = \(\dfrac{2\sqrt{x}+2}{3\sqrt{x}}\) (Đây là kết quả cuối cùng của x cho
biểu thức Q)
Bây giờ bạn chỉ cần thay x (giá trị của Q) và biểu thức P. Đó là GTLN của biểu thức P. Chúc bạn học tốt !!!
Bài 2:
a: \(\sqrt{4-x^2}>=0\)
Dấu '=' xảy ra khi x=2 hoặc x=-2
b: \(\sqrt{x^2-x+3}=\sqrt{x^2-x+\dfrac{1}{4}+\dfrac{11}{4}}\)
\(=\sqrt{\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}}>=\dfrac{\sqrt{11}}{2}\)
Dấu '=' xảy ra khi x=1/2
c: \(x+\sqrt{x}+1>=1\)
=>1/(x+căn x+1)<=1
Dấu '=' xảy ra khi x=0
GTNN và GTLN của cả A và B hay của A + B vậy bạn...