K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2018

2.

\(P=\dfrac{\sqrt{x-2018}}{x+2}+\dfrac{\sqrt{x-2019}}{x}\)

\(P=\dfrac{\sqrt{\left(x-2018\right).2020}}{\left(x+2\right)\sqrt{2020}}+\dfrac{\sqrt{\left(x-2019\right).2019}}{\sqrt{2019}.x}\)

Áp dụng BĐT AM-GM:

\(\sqrt{\left(x-2018\right).2020}\le\dfrac{1}{2}\left(x-2018+2020\right)=\dfrac{1}{2}\left(x+2\right)\)

\(\sqrt{\left(x-2019\right).2019}\le\dfrac{1}{2}\left(x-2019+2019\right)=\dfrac{1}{2}x\)

\(\Rightarrow P\le\dfrac{x+2}{2\sqrt{2020}\left(x+2\right)}+\dfrac{x}{2\sqrt{2019}.x}=\dfrac{1}{2\sqrt{2020}}+\dfrac{1}{2\sqrt{2019}}\)

\("="\Leftrightarrow x=4038\)

25 tháng 11 2018

không phải bơ đâu, oan cho tớ quá :>

27/11 thi nên ít lên, với cả chị tớ cũng không cho chat :>
lấy mật khẩu của tớ vô đọc góc ib là biết mà :>

NV
14 tháng 8 2021

\(x>\dfrac{1}{2}\sqrt{1}-\dfrac{\sqrt{2}}{8}>0\)

\(x^2=\dfrac{1}{4}\left(\sqrt{2}+\dfrac{1}{8}\right)+\dfrac{1}{32}-\dfrac{\sqrt{2}}{8}\sqrt{\sqrt{2}+\dfrac{1}{8}}\)

\(x^2=\dfrac{1}{16}+\dfrac{\sqrt{2}}{4}-\dfrac{\sqrt{2}}{8}\left(2x+\dfrac{\sqrt{2}}{4}\right)\)

\(x^2=\dfrac{1}{16}+\dfrac{\sqrt{2}}{4}-\dfrac{\sqrt{2}}{4}x-\dfrac{1}{16}=\dfrac{\sqrt{2}}{4}\left(1-x\right)\)

\(\Rightarrow x^4=\dfrac{1}{8}\left(x^2-2x+1\right)\)

\(\Rightarrow x^4+x+1=\dfrac{1}{8}\left(x^2-2x+1\right)+x+1=\dfrac{\left(x+3\right)^2}{8}\)

\(\Rightarrow A=x^2+\sqrt{\dfrac{\left(x+3\right)^2}{8}}=\dfrac{\sqrt{2}}{4}\left(1-x\right)+\dfrac{\sqrt{2}}{4}\left(x+3\right)=\sqrt{2}\)

14 tháng 8 2021

Cho em hỏi với ạ, sao dòng thứ 3 lại cho x vào được vậy ạ 

a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne\dfrac{1}{9}\end{matrix}\right.\)

Ta có: \(P=\left(\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{5\sqrt{x}}{9x-1}\right):\left(1-\dfrac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-3\sqrt{x}+1+5\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}:\left(\dfrac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\right)\)

\(=\dfrac{3x+\sqrt{x}-3\sqrt{x}-1-3\sqrt{x}+1+5\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\cdot\dfrac{3\sqrt{x}+1}{3}\)

\(=\dfrac{3x}{3\sqrt{x}-1}\cdot\dfrac{1}{3}\)

\(=\dfrac{x}{3\sqrt{x}-1}\)

b) Ta có: \(9x^2-10x+1=0\)

\(\Leftrightarrow\left(9x-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{9}\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)

Thay x=1 vào P, ta được:

\(P=\dfrac{1}{3-1}=\dfrac{1}{2}\)

c) Thay \(x=8-2\sqrt{7}\) vào P, ta được:

\(P=\dfrac{8-2\sqrt{7}}{3\left(\sqrt{7}-1\right)-1}=\dfrac{8-2\sqrt{7}}{3\sqrt{7}-4}\)

\(=\dfrac{-10+16\sqrt{7}}{47}\)

10 tháng 7 2021

a)

\(P=\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-\left(3\sqrt{x}-4\right)+5\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}.\dfrac{3\sqrt{x}+1}{3}\)

\(P=\dfrac{3x-2\sqrt{x}-1-3\sqrt{x}+4+5\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}.\dfrac{3\sqrt{x}+1}{3}\)

\(P=\dfrac{3\left(x+1\right)}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}.\dfrac{3\sqrt{x}+1}{3}\)

\(P=\dfrac{x+1}{3\sqrt{x}-1}\)

a: Thay \(x=\dfrac{1}{4}\) vào A, ta được:

\(A=\left(\dfrac{1}{2}+1\right):\left(\dfrac{1}{2}-2\right)=\dfrac{3}{2}:\dfrac{-3}{2}=-1\)

b: Ta có: \(B=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}-8}{x-5\sqrt{x}+6}\)

\(=\dfrac{x-4+\sqrt{x}-8}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x+\sqrt{x}-12}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}+4}{\sqrt{x}-2}\)

c: Để B là số tự nhiên thì \(\sqrt{x}+4⋮\sqrt{x}-2\)

\(\Leftrightarrow\sqrt{x}-2\in\left\{1;2;3;6\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{3;4;5;8\right\}\)

hay \(x\in\left\{16;25;64\right\}\)

18 tháng 10 2023

1) \(A=\sqrt{x}\left(\sqrt{x}+1\right)-\left(\sqrt{x}-1\right)^2-2\)

\(A=\sqrt{x}\cdot\sqrt{x}+\sqrt{x}-\left(x-2\sqrt{x}+1\right)-2\)

\(A=x+\sqrt{x}-\left(x-2\sqrt{x}+1\right)-2\)

\(A=x+\sqrt{x}-x+2\sqrt{x}-1-2\)

\(A=3\sqrt{x}-3\)

Thay \(x=9\) vào A ta có:

\(A=3\cdot\sqrt{9}-3=3\cdot3-3=9-3=6\)

18 tháng 10 2023

giúp mik làm câu 2 với ah

1: Ta có: \(P=\dfrac{x-\sqrt{x}}{x-9}+\dfrac{1}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}-3}\)

\(=\dfrac{x-\sqrt{x}+\sqrt{x}-3-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x-\sqrt{x}-6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}+2}{\sqrt{x}+3}\)

2)

a) Thay \(x=\dfrac{9}{4}\) vào P, ta được:

\(P=\left(\dfrac{3}{2}+2\right):\left(\dfrac{3}{2}+3\right)=\dfrac{7}{2}:\dfrac{11}{2}=\dfrac{7}{11}\)

b) Ta có: \(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)

\(=5+\sqrt{2}-4-\sqrt{2}\)

=1

Thay x=1 vào P, ta được:

\(P=\dfrac{1+2}{1+3}=\dfrac{3}{4}\)