K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2015

a/

\(=-x^2+2\text{x}-1+1\)

\(=-\left(x^2-2\text{x}+1-1\right)\)

\(=-\left(\left(x-1\right)^2-1\right)\)

\(=-\left(x-1\right)^2+1<=1\)

Dấu bằng xảy ra khi x-1=0 khi x=1

Vậy max A là 1 khi x=1

tick cho mình nha

3 tháng 12 2018

\(x^2-4x+1=x^2-2\cdot x\cdot2+4-4+1=\left(x-2\right)^2-4+1\)

\(=\left(x-2\right)^2-3\)    \(\forall x\in Z\)

\(\Rightarrow A_{min}=-3khix=2\)

3 tháng 12 2018

\(a,A=x^2-4x+1=x^2-2.2.x+2^2-3=\left(x-2\right)^2-3\ge-3\)

dấu = xảy ra khi x-2=0

=> x=2

Vậy MinA=-3 khi x=2

\(b,B=5-8x-x^2=-\left(x^2+8x+5\right)=-\left(x^2+2.4.x+4^2\right)+9=-\left(x+4\right)^2+9\le9\)

dấu = xảy ra khi x+4=0

=> x=-4

Vậy MaxB=9 khi x=-4

\(c,C=5x-x^2=-\left(x^2-5x\right)=-\left(x^2-\frac{2.x.5}{2}+\frac{25}{4}\right)+\frac{25}{4}=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)

dấu = xảy ra khi \(x-\frac{5}{2}=0\)

=> x=\(\frac{5}{2}\)

Vậy Max C=\(\frac{25}{4}\)khi x=\(\frac{5}{2}\)

\(E=\frac{1}{x^2+5x+14}=\frac{1}{x^2+\frac{2.x.5}{2}+\frac{25}{4}+\frac{31}{4}}=\frac{1}{\left(x+\frac{5}{2}\right)^2+\frac{31}{4}}\)

\(\left(x+\frac{5}{2}\right)^2+\frac{31}{4}\ge\frac{31}{4}\)

dấu = xảy ra khi \(x+\frac{5}{2}=0\)

=> x\(=-\frac{5}{2}\)

vì tử thức >0,mẫu thức nhỏ nhất và lớn hơn 0 => E lớnnhất khi mẫu thức nhỏ nhất 

Vậy \(MaxE=\frac{31}{4}\)khi x\(=-\frac{5}{2}\)

AH
Akai Haruma
Giáo viên
26 tháng 12 2018

Câu a:
\(A=x^2-4x+1=(x^2-4x+4)-3\)

\(=(x-2)^2-3\geq 0-3=-3\)

Dấu "=" xảy ra khi $(x-2)^2=0$ hay $x=2$

Vậy GTNN của $A$ là $-3$ khi $x=2$

Câu b:

\(B=5-8x-x^2=21-(x^2+8x+16)\)

\(=21-(x+4)^2\leq 21-0=21\)

Dấu "=" xảy ra khi $(x+4)^2=0$ hay $x=-4$

Vậy GTLN của $B$ là $21$ khi $x=-4$

AH
Akai Haruma
Giáo viên
26 tháng 12 2018

Câu c:

\(C=5x-x^2=-(x^2-5x)=\frac{25}{4}-(x^2-5x+\frac{5^2}{2^2})\)

\(=\frac{25}{4}-(x-\frac{5}{2})^2\leq \frac{25}{4}-0=\frac{25}{4}\)

Dấu "=" xảy ra khi \((x-\frac{5}{2})^2=0\Leftrightarrow x=\frac{5}{2}\)

Vậy GTLN của $C$ là $\frac{25}{4}$ khi $x=\frac{5}{2}$

Câu d:

\(D=(x-1)(x+3)(x+2)(x+6)=[(x-1)(x+6)][(x+3)(x+2)]\)

\(=(x^2+5x-6)(x^2+5x+6)\)

\(=(x^2+5x)^2-6^2=(x^2+5x)^2-36\geq 0-36=-36\)

Dấu "=" xảy ra khi \((x^2+5x)^2=0\Leftrightarrow \left[\begin{matrix} x=0\\ x=-5\end{matrix}\right.\)

Vậy GTNN của $D$ là $-36$ khi $x=0$ hoặc $x=-5$

5 tháng 7 2017

https://olm.vn/hoi-dapDễ z mà ko bít ..

NM
10 tháng 10 2021

ta có:

undefined

26 tháng 8 2016

a/ A = x2 + (y - 1)4 - 3

Do x2\(\ge\) 0 và (y - 1)4\(\ge\)0

=> A = x2 + (y - 1)4 - 3 \(\ge\)-3

Đẳng thức xảy ra khi: x = 0 và y - 1 = 0  => x = 0 và y = 1

Vậy GTNN của A là -3 khi x = 0 và y = 1

b/ B = 3(x2 - 7) + 2016 = 3x2 - 21 + 2016 = 3x2 + 1995 

Mà: 3x2\(\ge\)0  => B = 3x2 + 1995 \(\ge\)1995

Đẳng thức xảy ra khi: 3x2 = 0  => x = 0

Vậy GTNN của B là 1995 khi x = 0

c/ C = (2x + 3)(x - 5) - x(x - 7) = 2x2 -10x + 3x -15 - x2 + 7x = (2x2 - x2) + (-10x + 3x + 7x) - 15 = x2 - 15 \(\ge\)-15

Đẳng thức xảy ra khi: x2 = 0  => x = 0

Vậy GTNN cảu C là -15 khi x = 0