Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A\left(x\right)=-\left(x^2-\frac{5}{3}x\right)+1=-3\left(x^2-2.x.\frac{5}{6}+\left(\frac{5}{6}\right)^2\right)+1+3.\left(\frac{5}{6}\right)^2\)
\(=-3\left(x-\frac{5}{6}\right)^2+\frac{37}{12}\le\frac{37}{12}\)
Dấu "=" xảy ra khi \(x-\frac{5}{6}=0\Leftrightarrow x=\frac{5}{6}\)
Vậy GTLN của A là 37/12.
b, c làm tương tự.
a) Ta có \(\hept{\begin{cases}2\left(x-1\right)^2\ge0\forall x\\\left(y+3\right)^2\ge0\forall y\end{cases}}\Rightarrow A=2\left(x-1\right)^2+\left(y+3\right)^2\ge0\forall x;y\)
Dâu "=" xảy ra <=> \(\hept{\begin{cases}x-1=0\\y+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}}\)
Vậy GTNN của A là 0 khi x = 1 ; y = -3
b) Ta có \(\hept{\begin{cases}-\left(x+1\right)^2\le0\forall x\\-y^2\le0\forall y\end{cases}}\Rightarrow B=-\left(x+1\right)^2-y^2+2\le2\forall x;y\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+1=0\\y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=0\end{cases}}\)
Vậy GTLN của B là 2 khi x = -1 ; y = 0
a/
\(=-x^2+2\text{x}-1+1\)
\(=-\left(x^2-2\text{x}+1-1\right)\)
\(=-\left(\left(x-1\right)^2-1\right)\)
\(=-\left(x-1\right)^2+1<=1\)
Dấu bằng xảy ra khi x-1=0 khi x=1
Vậy max A là 1 khi x=1
tick cho mình nha