K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2015

A = 3 - /2x-1/ - (y+3)2 = 3 - ( /2x-1/ +  (y+3)2 ) \(\le\)

(Vì     ( /2x-1/ +  (y+3)2 ) \(\ge\)0     nên       - ( /2x-1/ +  (y+3)2 )\(\le\) 0    )

Vậy GTLN của A là 3 khi và chỉ khi  /2x-1/=0 \(\Leftrightarrow\)x=1/2 

                                                     và (y+3)2 =0 \(\Leftrightarrow\)y= -3

19 tháng 2 2017

\(x^2-5x+6=0\)

\(\Leftrightarrow x^2-2x-3x+6=0\)

\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\)

\(\Rightarrow\left\{\begin{matrix}x-3=0\\x-2=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=3\\x=2\end{matrix}\right.\)

23 tháng 2 2017

Cảm ơn bạn nhiều lắm

5 tháng 7 2016

A=x2-2x+5=x2-2x+1+4=(x-1)2+4

\(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+4\ge4\)

Amin <=> \(\left(x-1\right)^2+4=4\)

<=>(x-1)2=0

<=>x-1=0

<=>x=1

Vậy Amin=4 khi x=1

BACDH

     +   Xét ▲BCD cân tại D có DH là đường trung tuyến => DH chính là đường cao của ▲BCD

=>  DH \(\perp\)CD  

     +    Áp dụng định lý Pitago vào ▲vuông DHC có : 

                 DC2 = DH2 + CH2   (1)

    +   Xét ▲vuông ABC có :  AH là đường trung tuyến ứng vs cạnh huyền.

=>   AH = \(\frac{BC}{2}\)=CH (2)

     Từ (1) và (2) có :

                DC2 = DH2 + CH2 = DH2 + AH2   ( đpcm )

BACDH

  +   Xét ▲BCD cân tại D có DH là đường trung tuyến => DH chính là đường cao của ▲BCD

=>  DH \(\perp\)CD  

     +    Áp dụng định lý Pitago vào ▲vuông DHC có : 

                 DC2 = DH2 + CH2   (1)

    +   Xét ▲vuông ABC có :  AH là đường trung tuyến ứng vs cạnh huyền.

=>   AH = \(\frac{BC}{2}\)=CH (2)

     Từ (1) và (2) có :

                DC2 = DH2 + CH2 = DH2 + AH2   ( đpcm )

1 tháng 8 2018

\(\left(x^4\right)^2=\frac{x^{12}}{x^5}\)

\(x^8=x^{12}:x^5\)

\(x^8=x^7\)

=> x8 - x7 = 0

x7.(x-1) = 0

=> x7 = 0=> x = 0

x-1 = 0 => x = 1

KL:  x = 1 hoặc x = 0

1 tháng 8 2018

\(\frac{x}{\left(x^4\right)^2}=\frac{x^{12}}{x^5}\)

=>\(\frac{x}{x^8}=x^7\)

=>\(\frac{1}{x^7}=x^7\)

=>\(1=x^7.x^7\)

=>\(1^{14}=x^{14}\)

=>\(x=1\)

25 tháng 6 2018

a) \(2A=2+2^2+...+2^{2018}\)

\(A=1+2+2^2+..+2^{2017}\)

=> \(A=2^{2018}-1< 2^{2018}\)

=> A < B

b) \(3B=1+\frac{1}{3}+...+\frac{1}{3^{98}}\)

    \(B=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)

=> \(2B=3B-B=1-\frac{1}{3^{99}}\)

=> \(B=\frac{1}{2}-\frac{1}{3^{99}\cdot2}< \frac{1}{2}\)( đpcm )

17 tháng 8 2018

ta có: f(x) = x4 + 2x2 - 2x2 - 6x - x4 + 2x2 - x3 + 8x -x3 - 2

f(x) = (x4 - x4) +  (2x2 + 2x2 -2x2) + (8x-6x) - (x3 + x3 ) - 2

f(x) = 2x2 + 2x - 2x3 - 2 = 2x2- 2x3 + 2x - 2

Để f(x) = 0

=> 2x2 - 2x3 + 2x - 2 = 0 

2x2.(x-1) + 2.(x-1) = 0

(x-1).(2x2+2) = 0

=> x - 1 = 0 => x = 1

2x2 + 2 = 0 => 2x2 = -2 => x2 = - 1 => không tìm được x

KL:...

4 tháng 4 2018
=10x^n+1-5xy^n-2x6n-1-6xy^n+3x^n+1-5y^n-1 =11x^n-1-26xy^n nếu n là số lẻ thì... nếu n là số chẵn thì... tự thay
4 tháng 4 2018

sai đề rồi. phải là -5^n-1

7 tháng 5 2018

a. * A(x) = \(-2x^2+3x-4x^3+\dfrac{3}{5}-5x^4\)

A(x)= \(-5x^4-4x^3-2x^2+3x+\dfrac{3}{5}\)

*B(x) = \(3x^4+\dfrac{1}{5}-7x^2+5x^3-9x\)

B(x)= \(3x^4+5x^3-7x^2-9x+\dfrac{1}{5}\)

A(x) +B(x) = \(-5x^4-4x^3-2x^2+3x+\dfrac{3}{5}+3x^4+5x^3-7x^2-9x+\dfrac{1}{5}\)

\(-\left(5x^4-3x^4\right)-\left(4x^3-5x^3\right)-\left(2x^2+7x^2\right)+\left(3x-9x\right)+\left(\dfrac{3}{5}+\dfrac{1}{5}\right)\)

\(=-2x^4+x^3-9x^2-6x+\dfrac{4}{5}\)

B(x)-A(x)=\(\left(3x^4+5x^3-7x^2-9x+\dfrac{1}{5}\right)-\left(5x^4-4x^3-2x^2+3x+\dfrac{3}{5}\right)\)

\(3x^4+5x^3-7x^2-9x+\dfrac{1}{5}-5x^4+4x^3+2x^2-3x-\dfrac{3}{5}\)

\(\left(3x^4-5x^4\right)+\left(5x^3+4x^3\right)-\left(7x^2-2x^2\right)-\left(9x+3x\right)+\left(\dfrac{1}{5}-\dfrac{3}{5}\right)\)

\(-2x^4+9x^3-5x^2-12x+\dfrac{2}{5}\)

Đúng 100% nha.Bạn Thanh bạn ấy tính nhầm và àm nhầm nên kq mới như vậy

6 tháng 5 2018

Cho 2 đa thức sau: A(x)=-2x2+3x-4x3+\(\dfrac{3}{5}\)-5x4

B(x)=3x4+\(\dfrac{1}{5}\)-7x2+5x3-9x

a.sắp xếp các đa thức sau theo lũy thừa giảm dần của biến.

A(x)= -5x4 -4x3 -2x2 +3x+\(\dfrac{3}{5}\)

B(x)= 3x4 +5x3 -7x2 -9x+ \(\dfrac{1}{5}\)

b. A(x)+B(x)=(-5x4 -4x3 -2x2 +3x+\(\dfrac{3}{5}\))+ (3x4 +5x3 -7x2 -9x+\(\dfrac{1}{5}\) ) =-5x4 -4x3 -2x2 +3x+\(\dfrac{3}{5}\)+3x4 +5x3 -7x2 -9x +\(\dfrac{1}{5}\)

= (-5x4 +3x4 )+(-4x3 +5x3) +(-2x2 -7x2)+(3x-9x)+(\(\dfrac{3}{5}\)+\(\dfrac{1}{5}\))

= -2x4 +x3 -8x2 -6x+\(\dfrac{4}{5}\)

A(x)-B(x)=(-5x4 -4x3 -2x2 +3x+\(\dfrac{3}{5}\))-(3x4 +5x3 -7x2 -9x+\(\dfrac{1}{5}\) )

=-5x4 -4x3 -2x2 +3x+\(\dfrac{3}{5}\)-3x4 -5x3 +7x2 +9x-\(\dfrac{1}{5}\)

=(-5x4 -3x4 )+(-4x3-5x3) +(-2x2 +7x2)+(3x+9x)+(\(\dfrac{3}{5}\)-\(\dfrac{1}{5}\))

=-8x4-9x2+5x2+12x+\(\dfrac{2}{5}\)

CHÚC BN HỌC TỐT