K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
23 tháng 7 2021

ta có :

\(S=-x^2+2xy-4y^2+2x+10y-8=-\left(x-y\right)^2-3y^2+2x+10y-8\)

\(=-\left(x-y\right)^2+2\left(x-y\right)-3y^2+12y-8=-\left(x-y-1\right)^2-3\left(y^2-4y+4\right)+5\)

\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2+5\le5\)

Dấu = xảy ra khi \(\hept{\begin{cases}x-y-1=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}}\)

21 tháng 11 2018

Trần Việt Hoàng !!! Em xem lại đề nhé! Cô nghĩ là M= - x^2+2xy-4y^2+2x+10y-8

19 tháng 10 2020

Đặt A = -x2 + 2xy - 4y2 + 2x + 10y - 8

= -[(x2 - 2xy + y2) - 2(x - y) + 1] - (3y2 - 12y + 12) + 5

= -[(x - y - 1)2 + 3(y - 2)2] + 5\(\le\)5

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y-1=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}\)

Vậy Max A = 5 <=> x = 3 ; y = 2

19 tháng 10 2020

-x2 + 2xy - 4y2 + 2x + 10y - 8 

= -( x2 - 2xy + y2 - 2x + 2y + 1 ) - ( 3y2 - 12y + 12 ) + 5

= -[ ( x2 - 2xy + y2 ) - ( 2x - 2y ) + 1 ] - 3( y2 - 4y + 4 ) + 5

= -[ ( x - y )2 - 2( x - y ) + 12 ] - 3( y - 2 )2 + 5

= -( x - y - 1 )2 - 3( y - 2 )2 + 5

Ta có : \(\hept{\begin{cases}-\left(x-y-1\right)^2\\-3\left(y-2\right)^2\end{cases}}\le0\forall x,y\Rightarrow-\left(x-y-1\right)^2-3\left(y-2\right)^2+5\le5\forall x,y\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-y-1=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}\)

Vậy GTLN của biểu thức = 5 <=> x = 3 ; y = 2

8 tháng 8 2015

A=\(-x^2+2xy-4y^2+2x+8y-8=-\left(x^2-2xy+y^2-2x+1+2y\right)-\left(3y^2-6y+3\right)-4=-4-\left(x-y-1\right)^2-3\left(y-1\right)^2\le-4\)

=>Max A=-4<=>(x-y-1)2=0 và (y-1)2=0<=>x=2 y=1

21 tháng 11 2018

\(6M=-6x^2+12xy-24y^2+12x+60y-48\)

\(=(-4x^2+12xy+9y^2)+(-2x^2+12x)+(-15y^2+60y)-48\)

\(=-(2x-3y)^2-2(x^2-6x+9)-15(y^2-4y+4)+30\)

\(=-(2x-3y)^2-2(x-3)^2-15(y-2)^2+30\le30\)

Dấu " = " xảy ra khi : 2x - 3y = 0 ; x - 3 = 0 , y - 2 = 0 => \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)

Vậy GTLN của M là \(\frac{30}{8}=5\)tại x = 3 , y = 2

Chúc bạn học tốt :>

9 tháng 8 2017

a) \(M=10x^2+6y+4y^2+4xy+2\)

\(=\left(10x^2+4xy+\dfrac{2}{5}y^2\right)+\left(\dfrac{18}{5}y^2+6y+\dfrac{5}{2}\right)-\dfrac{1}{2}\)

\(=10\left(x^2+\dfrac{2}{5}xy+\dfrac{1}{25}y^2\right)+\dfrac{18}{5}\left(y^2+\dfrac{5}{3}y+\dfrac{25}{36}\right)-\dfrac{1}{2}\)

\(=10\left(x+\dfrac{1}{5}y\right)^2+\dfrac{18}{5}\left(y+\dfrac{5}{6}\right)^2-\dfrac{1}{2}\ge-\dfrac{1}{2}\)

Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{5}y=0\\y+\dfrac{5}{6}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=-\dfrac{5}{6}\end{matrix}\right.\)

b) \(H=-x^2+2xy-4y^2+2x+10y-8\)

\(=-x^2+2x\left(y+1\right)-\left(y^2+2y+1\right)-\left(3y^2-12y+7\right)\)

\(=-x^2+2x\left(y+1\right)-\left(y+1\right)^2-3\left(y^2-4y+4\right)+5\)

\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2+5\le5\)

Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)

c) \(K=2x^2+2xy-2x+2xy+y^2\)

bn xem lại cái đề nhé, sao lại có 2 lần 2xy

9 tháng 8 2017

Câu c đúng đề mà

15 tháng 7 2017

\(C=-3x\left(3+x\right)-7=-9x-3x^2-7=-\left(3x^2+9x+7\right)=-3\left(x^2+3x+\frac{7}{3}\right)\)

=\(-3\left(x^2+2.\frac{3}{2}.x+\frac{9}{4}+\frac{1}{12}\right)=-3\left[\left(x+\frac{3}{2}\right)^2+\frac{1}{12}\right]=-3\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\le-\frac{1}{4}\)

Dấu "=" xảy ra khi x=-3/2

---

\(D=2xy-x^2-4y^2-8+2x+10y\)

\(=-\left(x^2+2xy-2x+4y^2-10y+8\right)\)

\(=-\left[x^2+2x\left(y-1\right)+4y^2-10y+8\right]\)

\(=-\left[x^2+2x\left(y-1\right)+\left(y^2-2y+1\right)+3y^2-8y+7\right]\)

\(=-\left[x^2+2x\left(y-1\right)+\left(y-1\right)^2+3\left(y^2-2.\frac{4}{3}.y+\frac{16}{9}\right)+\frac{5}{3}\right]\)

\(=-\left[\left(x+y-1\right)^2+3\left(y-\frac{4}{3}\right)^2+\frac{5}{3}\right]\)

\(=-\left(x+y-1\right)^2-3\left(y-\frac{4}{3}\right)^2-\frac{5}{3}\le-\frac{5}{3}\)

Dấu "=" xảy ra khi x=-1/3 và y=4/3