K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2017

\(A=4x-x^2+3=-\left(x^2-4x-3\right)\)

\(=-\left(x^2-4x+4-7\right)\)

\(=-\left(x-2\right)^2+7\le7\)

Dấu " = " khi \(-\left(x-2\right)^2=0\Rightarrow x=2\)

Vậy \(MIN_A=7\) khi x = 2

12 tháng 7 2017

Đặt \(A=4x-x^2+3\)

\(\Leftrightarrow A=-x^2+4x+3\)

\(\Rightarrow A=-\left(x^2-4x-3\right)\)

\(\Rightarrow A=-\left(x^2-4x+4-7\right)\)

\(\Rightarrow A=\left(x-2\right)^2+7\le7\)

Vậy Amax=7

15 tháng 12 2015

C =- (4x2+4x+1) - (9y2 -6y +1) +3 = - (2x+1)2 - ( 3y -1)2 + 3 </ 3

C max = 3 khi x =-1/2 và y =1/3

 

D - dể  suy nghĩ đã nhé

15 tháng 12 2015

ai ủng hộ vài li-ke tròn 210 lun , please

22 tháng 10 2020

a) \(-x^2+2x+4=-\left(x^2-2x+1\right)+5=-\left(x-1\right)^2+5\)

\(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow-\left(x-1\right)^2\le0\)\(\Rightarrow-\left(x-1\right)^2+5\le5\)

dấu "=" xảy ra khi chỉ khi x - 1 = 0 => x = 1

Vậy GTLN của biểu thức là 5 khi chỉ khi x = 1

b) \(4x-x^2=-x^2+4x-4+4=-\left(x^2-4x+4\right)+4=-\left(x-2\right)^2+4\)

ta  có \(\left(x-2\right)^2\ge0\Rightarrow-\left(x-2\right)^2\le0\Rightarrow-\left(x-2\right)^2+4\le4\)

dấu "=" xảy ra khi chỉ khi x - 2 = 0 => x = 2

Vậy GTLN của biểu thức là 4 khi chỉ khi x = 2.

c) \(4x-x^2+3=-x^2+4x-4+7=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\)

ta có: \(\left(x-2\right)^2\ge0\Rightarrow-\left(x-2\right)^2\le0\Rightarrow-\left(x-2\right)^2+7\le7\)

dấu "=" xảy ra khi chỉ khi x - 2 = 0 => x = 2

Vậy GTLN của biểu thức là 7 khi chỉ khi x = 2.

22 tháng 10 2020

a) -x2 + 2x + 4 = -( x2 - 2x + 1 ) + 5 = -( x - 1 )2 + 5 ≤ 5 ∀ x

Dấu "=" xảy ra khi x = 1

=> GTLN của biểu thức = 5 <=> x = 1

b) 4x - x2 = -( x2 - 4x + 4 ) + 4 = -( x - 2 )2 + 4 ≤ 4 ∀ x

Dấu "=" xảy ra khi x = 2

=> GTLN của biểu thức = 4 <=> x = 2

c) 4x - x2 + 3 = -( x2 - 4x + 4 ) + 7 = -( x - 2 )2 + 7 ≤ 7 ∀ x

Dấu "=" xảy ra khi x = 2

=> GTLN của biểu thức = 7 <=> x = 2

4 tháng 11 2016

Ta có:    4x - x^2 +10  =  -(x^2 -4x - 10)

                                   =  -(x^2 - 4x + 4 - 14)

                                   =  -(x - 2)^2 + 14

                                   =  14 -(x-2)^2  <= 14

      Vậy Max(bt)=14 khi x=2

12 tháng 7 2018

1/

a, \(A=4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)

Dấu "=" xảy ra khi x=1/2

Vậy Amin=4 khi x=1/2

b, \(B=3x^2+6x-1=3\left(x^2+2x+1\right)-4=3\left(x+1\right)^2-4\ge-4\)

Dấu "=" xảy ra khi x=-1

Vậy Bmin = -4 khi x=-1

2/

a, \(A=10+6x-x^2=-\left(x^2-6x+9\right)+19=-\left(x-3\right)^2+19\le19\)

Dấu "=" xảy ra khi x=3

Vậy Amax = 19 khi x=3

b, \(B=7-5x-2x^2=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)+\frac{31}{8}=-2\left(x-\frac{5}{4}\right)^2+\frac{31}{8}\le\frac{31}{8}\)

Dấu "=" xảy ra khi x=5/4

Vậy Bmax = 31/8 khi x=5/4

18 tháng 12 2016

\(A=x^2-4x^2+2-1=\left(x-2\right)^2-1\)

suy ra Amin=-1

18 tháng 12 2016

\(B=4x^2+4x+11=4\left(x^2+x+\frac{11}{4}\right)=4\left(x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{10}{4}\right)=4\left(x+\frac{1}{2}\right)^2+10\) Suy ra Bmin = 10

24 tháng 11 2016

a) Ta có:H=4x^2+4x+5

=[(2x)^2+2.x.2+1^2]+4

=(2x+1)^2+4 

vì (2x+1)^2 lớn hơn hoặc bằng 0 nên GTNN của H=4 khi và chỉ khi 2x+1=0 suy ra x=-1/2

b)Ta có G=12x-1-4x^2

=-4x^2-1-12x

=-[(2x)^2+2.2x.3+3^2]+8

=8-(2x+3)^2

Vì (2x+3)^2 lớn hơn hoặc bằng 0 nên GTLN của G=8 khi và chỉ khi 2x+3=0 suy ra x=-3/2

c)Ta có K=x^2+x+1

=[x^2+2.x.1/2+(1/2)^2]+3/4

=(x+1/2)^2+3/4

Vì x+1/2 lớn hơn hoặc bằng 0 nên GTNN của K =3/4 khi và chỉ khi x+1/2=0 suy ra x=-1/2

31 tháng 5 2016

1) \(C=-\left(x^2-6x+9\right)+5\)

\(\Leftrightarrow C=-\left(x-3\right)^2+5.\)

Vậy GTLN của C là 5 <=> x=3

3) \(E=-\left(x^2+4x+4\right)-\left(y^2-2y+1\right)+5\)

\(E=-\left(x+2\right)^2-\left(y-1\right)^2+5\)

Vậy GTNN của E bằng 5 <=> x=-2 và y=1

31 tháng 5 2016

Dương: Câu c là GTLN em nhé :)

b. Ta chia ra thành các trường hợp:

- Với \(x\ge3,D=\left(x-3\right)\left(2-x+3\right)=\left(x-3\right)\left(5-x\right)=-x^2+8x-15=1-\left(x-4\right)^2\le1\)

- Với \(x< 3,D=\left(3-x\right)\left(2-3+x\right)=\left(3-x\right)\left(x-1\right)=-x^2+4x-3=1-\left(x-2\right)^2\le1\)

Vậy GTLN của D = 1 khi x = 4 hoặc x = 2.

Chúc em học tốt :))