Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
a, \(A=4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)
Dấu "=" xảy ra khi x=1/2
Vậy Amin=4 khi x=1/2
b, \(B=3x^2+6x-1=3\left(x^2+2x+1\right)-4=3\left(x+1\right)^2-4\ge-4\)
Dấu "=" xảy ra khi x=-1
Vậy Bmin = -4 khi x=-1
2/
a, \(A=10+6x-x^2=-\left(x^2-6x+9\right)+19=-\left(x-3\right)^2+19\le19\)
Dấu "=" xảy ra khi x=3
Vậy Amax = 19 khi x=3
b, \(B=7-5x-2x^2=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)+\frac{31}{8}=-2\left(x-\frac{5}{4}\right)^2+\frac{31}{8}\le\frac{31}{8}\)
Dấu "=" xảy ra khi x=5/4
Vậy Bmax = 31/8 khi x=5/4
C =- (4x2+4x+1) - (9y2 -6y +1) +3 = - (2x+1)2 - ( 3y -1)2 + 3 </ 3
C max = 3 khi x =-1/2 và y =1/3
D - dể suy nghĩ đã nhé
1.
A=\(4x^2-4x+5\)
A=\(\left(2x\right)^2-4x+1+4\)
A=\(\left(2x-1\right)^2+4\)
vì \(\left(2x-1\right)^2\)≥0 với mọi x
⇒\(\left(2x-1\right)^2+4\)≥4 với mọi x
Dấu"="xảy ra khi \(\left(2x-1\right)^2\)=0
⇔2x-1=0
⇔x=\(\dfrac{1}{2}\)
Vậy GTNN của A là 4 khi x=\(\dfrac{1}{2}\)
B=\(3x^2+6x-1\)
B=3(\(\left(x^2+2x\right)\)-1
B=\(3.\left(x^2+2x-1+1\right)-1\)
B=\(3.\left(x+1\right)^2-3-1\)
B=\(3\left(x-1\right)^2-4\)
vì \(3.\left(x-1\right)^2\)≥0 với mọi x
⇒\(3\left(x-1\right)^2-4\)≥-4 với mọi x
dấu "= "xảy ra khi \(3.\left(x-1\right)^2=0\)
⇔x-1=0
⇔x=1
vậy GTNN của B=-4 khi x=1
a) Ta có:H=4x^2+4x+5
=[(2x)^2+2.x.2+1^2]+4
=(2x+1)^2+4
vì (2x+1)^2 lớn hơn hoặc bằng 0 nên GTNN của H=4 khi và chỉ khi 2x+1=0 suy ra x=-1/2
b)Ta có G=12x-1-4x^2
=-4x^2-1-12x
=-[(2x)^2+2.2x.3+3^2]+8
=8-(2x+3)^2
Vì (2x+3)^2 lớn hơn hoặc bằng 0 nên GTLN của G=8 khi và chỉ khi 2x+3=0 suy ra x=-3/2
c)Ta có K=x^2+x+1
=[x^2+2.x.1/2+(1/2)^2]+3/4
=(x+1/2)^2+3/4
Vì x+1/2 lớn hơn hoặc bằng 0 nên GTNN của K =3/4 khi và chỉ khi x+1/2=0 suy ra x=-1/2
a) \(-x^2+2x+4=-\left(x^2-2x+1\right)+5=-\left(x-1\right)^2+5\)
\(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow-\left(x-1\right)^2\le0\)\(\Rightarrow-\left(x-1\right)^2+5\le5\)
dấu "=" xảy ra khi chỉ khi x - 1 = 0 => x = 1
Vậy GTLN của biểu thức là 5 khi chỉ khi x = 1
b) \(4x-x^2=-x^2+4x-4+4=-\left(x^2-4x+4\right)+4=-\left(x-2\right)^2+4\)
ta có \(\left(x-2\right)^2\ge0\Rightarrow-\left(x-2\right)^2\le0\Rightarrow-\left(x-2\right)^2+4\le4\)
dấu "=" xảy ra khi chỉ khi x - 2 = 0 => x = 2
Vậy GTLN của biểu thức là 4 khi chỉ khi x = 2.
c) \(4x-x^2+3=-x^2+4x-4+7=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\)
ta có: \(\left(x-2\right)^2\ge0\Rightarrow-\left(x-2\right)^2\le0\Rightarrow-\left(x-2\right)^2+7\le7\)
dấu "=" xảy ra khi chỉ khi x - 2 = 0 => x = 2
Vậy GTLN của biểu thức là 7 khi chỉ khi x = 2.
a) -x2 + 2x + 4 = -( x2 - 2x + 1 ) + 5 = -( x - 1 )2 + 5 ≤ 5 ∀ x
Dấu "=" xảy ra khi x = 1
=> GTLN của biểu thức = 5 <=> x = 1
b) 4x - x2 = -( x2 - 4x + 4 ) + 4 = -( x - 2 )2 + 4 ≤ 4 ∀ x
Dấu "=" xảy ra khi x = 2
=> GTLN của biểu thức = 4 <=> x = 2
c) 4x - x2 + 3 = -( x2 - 4x + 4 ) + 7 = -( x - 2 )2 + 7 ≤ 7 ∀ x
Dấu "=" xảy ra khi x = 2
=> GTLN của biểu thức = 7 <=> x = 2
Ta có : 5 - 4x2 + 4x
= 6 - 1 - 4x2 + 4x
= 6 - (4x2 - 4x + 1)
= 6 - (2x - 1)2
Mà (2x - 1)2 \(\ge0\forall x\)
Nên 6 - (2x - 1)2 \(\le6\forall x\)
Vậy GTLN cuả biểu thức là : 6 khi và chỉ khi x = \(\frac{1}{2}\)
Ta có: 4x - x^2 +10 = -(x^2 -4x - 10)
= -(x^2 - 4x + 4 - 14)
= -(x - 2)^2 + 14
= 14 -(x-2)^2 <= 14
Vậy Max(bt)=14 khi x=2