Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(B\)lớn nhất thì \(\frac{1}{B}\) nhỏ nhất
Ta có: \(\frac{1}{B}=\frac{x^2+20x+100}{x}=x+\frac{100}{x}+20\)
Áp dụng BĐT Cô-si ta có: \(\frac{1}{B}=x+\frac{100}{x}+20\ge2\sqrt{x.\frac{100}{x}}+20=2.\sqrt{100}+20=40\)
Dấu :'=" xảy ra \(\Leftrightarrow\)\(x=\frac{100}{x}\)\(\Leftrightarrow\)\(x=10\)
Min \(\frac{1}{B}=40\) \(\Rightarrow\) Max \(B=\frac{1}{40}\) \(\Leftrightarrow\)\(x=10\)
P/s: tham khảo nhé, nếu có sai đâu m.n chỉ mk nhé (yếu nhất cực trị)
\(A=x^2-20x+101\)
\(=x^2-20x+100+1\)
\(=\left(x-10\right)^2+1\)
\(\Rightarrow A_{min}=1\Leftrightarrow\left(x-10\right)^2=0\)
\(\Rightarrow x-10=0\)
\(\Rightarrow x=10\)
1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)
vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)
dấu = xảy ra khi x-2018=0
=> x=2018
Vậy Min A=\(\frac{2017}{2017}\)khi x=2018
2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)
\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)
để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất
mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)
dấu = xảy ra khi \(x+\frac{3}{2}=0\)
=> x=\(-\frac{3}{2}\)
Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)
3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)
để M lớn nhất => x2+4 nhỏ nhất
mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)
dấu = xảy ra khi x2 =0
=> x=0
Vậy Max M\(=\frac{7}{2}\)khi x=0
ps: bài này khá dài, sai sót bỏ qua =))
\(a=\dfrac{2010}{x^2-2x+1001}=\dfrac{2010}{x^2-2x+1+1000}=\dfrac{2010}{\left(x-1\right)^2+1000}\le\dfrac{101}{100}\)
\(b=\dfrac{1000}{x^2+y^2-20\left(x+y\right)+2210}=\dfrac{1000}{x^2+y^2-20x-20y+2210}=\dfrac{1000}{x^2+y^2-20x-20y+100+100+2010}=\dfrac{1000}{\left(x-10\right)^2+\left(y-10\right)^2+2010}\le\dfrac{100}{201}\)
\(c=\dfrac{100}{25x^2-20x+14}=\dfrac{100}{25x^2-20x+4+10}=\dfrac{10}{\left(5x-2\right)^2+10}\le1\)
mk ko hiểu cái chỗ a. \(\le\dfrac{101}{100}\)
b.\(\le\dfrac{100}{201}\)
Câu 1:
Đầu tiên,ta chứng minh BĐT phụ (mang tên Cô si): \(x+y\ge2\sqrt{xy}\)
Thật vậy,điều cần c/m \(\Leftrightarrow x+y-2\sqrt{xy}\ge0\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\) (luôn đúng)
Vậy BĐT phụ (Cô si) là đúng.
----------------------------------------------------------
Áp dụng BĐT Cô si,ta có: \(2\sqrt{x}=2\sqrt{1x}\le x+1\)
Do đó:
\(B=\frac{2\sqrt{x}}{x+1}\le\frac{x+1}{x+1}=1\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\)
accept đi mình ở An Quý nè
Xét \(x=0\Rightarrow B=0\left(1\right)\)
Xét \(x\ne0\) thì ta có:
\(\frac{1}{B}=\frac{x^2+20x+100}{x}=x+\frac{100}{x}+20\ge2\sqrt{x.\frac{100}{x}}+20=40\)
\(\Rightarrow B\le\frac{1}{40}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\)GTLN là \(\frac{1}{40}\)