\(\frac{x}{x^2+20x+100}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2021

accept đi mình ở An Quý nè

14 tháng 3 2021

Xét \(x=0\Rightarrow B=0\left(1\right)\)

Xét \(x\ne0\) thì ta có:

\(\frac{1}{B}=\frac{x^2+20x+100}{x}=x+\frac{100}{x}+20\ge2\sqrt{x.\frac{100}{x}}+20=40\)

\(\Rightarrow B\le\frac{1}{40}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\)GTLN là \(\frac{1}{40}\)

25 tháng 4 2018

Để  \(B\)lớn nhất thì  \(\frac{1}{B}\) nhỏ nhất 

Ta có:   \(\frac{1}{B}=\frac{x^2+20x+100}{x}=x+\frac{100}{x}+20\)

Áp dụng BĐT Cô-si ta có:   \(\frac{1}{B}=x+\frac{100}{x}+20\ge2\sqrt{x.\frac{100}{x}}+20=2.\sqrt{100}+20=40\)

Dấu :'=" xảy ra   \(\Leftrightarrow\)\(x=\frac{100}{x}\)\(\Leftrightarrow\)\(x=10\)

Min  \(\frac{1}{B}=40\)  \(\Rightarrow\) Max  \(B=\frac{1}{40}\) \(\Leftrightarrow\)\(x=10\)

P/s:  tham khảo nhé, nếu có sai đâu m.n chỉ  mk nhé  (yếu nhất cực trị)

31 tháng 1 2016
Mjnh moi hoc lop 5
31 tháng 1 2016

\(Vậy-bạn-không-cần-trả-lời-đâu\)

14 tháng 6 2019

\(A=x^2-20x+101\)

\(=x^2-20x+100+1\)

\(=\left(x-10\right)^2+1\)

\(\Rightarrow A_{min}=1\Leftrightarrow\left(x-10\right)^2=0\)

\(\Rightarrow x-10=0\)

\(\Rightarrow x=10\)

14 tháng 6 2019

#)Giải :

\(A=x^2-20x+101\)

\(A=x^2+2.10.x+10^2+1\)

\(A=\left(x+10\right)^2+1\ge1\)

Dấu ''='' xảy ra khi x = -10

=> Vậy GTNN của A = 1 đạt được khi x = -10

2 tháng 12 2018

1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)

vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)

dấu = xảy ra khi x-2018=0

=> x=2018

Vậy Min A=\(\frac{2017}{2017}\)khi x=2018

2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)

\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)

để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất

mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)

dấu = xảy ra khi \(x+\frac{3}{2}=0\)

=> x=\(-\frac{3}{2}\)

Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)

3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)

để M lớn nhất => x2+4 nhỏ nhất

mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)

dấu = xảy ra khi x=0

=> x=0

Vậy Max M\(=\frac{7}{2}\)khi x=0

ps: bài này khá dài, sai sót bỏ qua =))

2 tháng 12 2018

ê viết lộn dòng này :v

\(MinA=\frac{2017}{2018}\)nha 

17 tháng 10 2017

\(a=\dfrac{2010}{x^2-2x+1001}=\dfrac{2010}{x^2-2x+1+1000}=\dfrac{2010}{\left(x-1\right)^2+1000}\le\dfrac{101}{100}\)

\(b=\dfrac{1000}{x^2+y^2-20\left(x+y\right)+2210}=\dfrac{1000}{x^2+y^2-20x-20y+2210}=\dfrac{1000}{x^2+y^2-20x-20y+100+100+2010}=\dfrac{1000}{\left(x-10\right)^2+\left(y-10\right)^2+2010}\le\dfrac{100}{201}\)

\(c=\dfrac{100}{25x^2-20x+14}=\dfrac{100}{25x^2-20x+4+10}=\dfrac{10}{\left(5x-2\right)^2+10}\le1\)

18 tháng 10 2017

mk ko hiểu cái chỗ a. \(\le\dfrac{101}{100}\)

b.\(\le\dfrac{100}{201}\)

18 tháng 12 2018

Câu 2 hình như sai đề bạn ey.

18 tháng 12 2018

Câu 1: 

Đầu tiên,ta chứng minh BĐT phụ (mang tên Cô si): \(x+y\ge2\sqrt{xy}\)

Thật vậy,điều cần c/m  \(\Leftrightarrow x+y-2\sqrt{xy}\ge0\)

\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\) (luôn đúng)

Vậy BĐT phụ (Cô si) là đúng.

----------------------------------------------------------

Áp dụng BĐT Cô si,ta có: \(2\sqrt{x}=2\sqrt{1x}\le x+1\)

Do đó: 

\(B=\frac{2\sqrt{x}}{x+1}\le\frac{x+1}{x+1}=1\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\)