Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm GTNN:
a) \(x^2-2x+5\)
\(=x^2-2x+4+1\)
\(=\left(x-2\right)^2+1\ge1\)
vậy GTNN của biểu thức trên =1 khi x=2
a) Ta có : x2 - 2x + 5
= x2 - 2x + 1 + 4
= (x - 1)2 + 4
Mà (x - 1)2 \(\ge0\forall x\)
=> (x - 1)2 + 4 \(\ge4\forall x\)
Vậy GTNN của biểu thức là 4 khi x = 1
Ta có : x2 - 2x + 5
= x2 - 2x + 1 + 4
= (x - 1)2 + 4
Mà (x - 1)2 \(\ge0\forall x\)
Nên (x - 1)2 + 4 \(\ge4\forall x\)
Vậy GTNN của biểu thức là : 4 khi và chỉ khi x = 1
\(P=x^2-2x+5\)
\(P=x^2-2x+1+4\)
\(P=\left(x-1\right)^2+4\ge4\)
=> GTNN của P = 4
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x=1\)
Vậy................
1) a)
\(P=x^2-2x+5\)
\(=x^2-2x+4+1\)
\(=\left(x+2\right)^2+1\ge1\)
vậy min O =1 khi x= -2
1)
c) K = 4x - x2 - 5
= -x2 + 4x - 4 - 1
= - (x2 - 4x + 4) - 1
= - (x - 2)2 - 1
Vì (x - 2)2 \(\ge0\forall x\)
=> - (x - 2)2 \(\le0\forall x\)
=> -(x - 2)2 \(\le-1\forall x\)
Vậy GTLN của biểu thức là - 1 khi và chi x = 2
Ta có : x2 + 4x
= x2 + 4x + 4 - 4
= (x + 2)2 - 4
Mà ; (x + 2)2 \(\ge0\forall x\)
Nên : (x + 2)2 - 4 \(\ge-4\forall x\)
Vậy GTNN của biểu thức là -4 khi x = -2
Ta có : 4x2 - 4x - 1
= (2x)2 - 4x + 1 - 1
= (2x - 1)2 - 1
Mà : (2x - 1)2 \(\ge0\forall x\)
Nên : (2x - 1)2 - 1 \(\ge-1\forall x\)
Vậy GTNN của biểu thức là - 1 khi x = \(\frac{1}{2}\)
Bài 1: a) Tìm a để đa thức 3x5-2x4-4x3+x2+x+a chia hết cho x2-1.
b) Tìm GTLN của biểu thức: A= x-x2.
a) Ta thực hiện phép chia \(3x^3+13x^2-7x+5\) cho \(3x-2\). Khi đó ta có:
\(A=\frac{3x^3+13x^2-7x+5}{3x-2}=3x^2+5x+1+\frac{7}{3x-2}\)
Nếu x nguyên thì \(3x^2+5x+1\in\text{Z}\) nên để A nguyên thì \(\frac{7}{3x-2}\in Z\)
\(\Rightarrow3x-2\in\left\{-7;-1;1;7\right\}\)
\(\Rightarrow x\in\left\{1;3\right\}\)
b) Ta có: \(B=\frac{2x^5+4x^4-7x^3-44}{2x^2-7}=\left(x^3+2x^2+7\right)+\frac{5}{2x^2-7}\)
Để B nguyên thì \(\frac{5}{2x^2-7}\in Z\Rightarrow2x^2-7\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow x\in\left\{-1;1;2;-2\right\}\)
\(A=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\).Vậy Max A=7 <=> x=2
\(B=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\).Vậy Max B=1/4 <=> x=1/2
Câu C hình như tớ làm cho cậu rồi mà!
\(A=5-4x^2+4x\)
\(=-\left(4x^2-4x+1\right)+6\)
\(=-\left(2x-1\right)^2+6\le6\)
Dấu "=" xảy ra tại \(x=\frac{1}{2}\)
\(B=12-x^2-2x=-\left(x^2+2x+1\right)+13\)
\(=-\left(x+1\right)^2+13\le13\)
Dấu"=" xảy ra khi \(x=-1\)
\(a^2+4a+5⋮a+3\)
\(\Rightarrow\left(a+1\right)\left(a+3\right)+1⋮a+3\)
\(\Rightarrow1⋮a+3\)
Làm nốt
\(\left(a^2+4a+5\right)⋮\left(a+3\right)\)
\(\Leftrightarrow\left[a\left(a+3\right)+\left(a+3\right)+2\right]⋮\left(a+3\right)\)
Vì \(\hept{\begin{cases}\left[a\left(a+3\right)\right]⋮\left(a+3\right)\\\left(a+3\right)⋮\left(a+3\right)\end{cases}}\Rightarrow2⋮\left(a+3\right)\)
\(\Rightarrow a+2\in\left\{\pm1;\pm3\right\}\)
Lập bảng:
Vậy \(a\in\left\{-1;-3;1;-5\right\}\)