K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2019

\(P=\left(x-2012\right)^2+\left(x+2013\right)^2=\left(2012-x\right)^2+\left(x+2013\right)^2\ge\frac{\left(2012-x+x+2013\right)^2}{1+1}\)

\(=\frac{4025^2}{2}=8100312,5\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(2012-x=x+2013\)\(\Leftrightarrow\)\(x=\frac{-1}{2}\)

16 tháng 6 2018

a, Đặt \(A=2+x-x^2=-\left(x^2-x-2\right)=-\left(x^2-x+\frac{1}{4}-\frac{9}{4}\right)=-\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\)

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow-\left(x-\frac{1}{2}\right)^2\le0\Rightarrow A=-\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\)

Dấu "=" xảy ra khi x = 1/2

Vậy Amax=9/4 khi x=1/2

b, Đặt \(B=4x^2-20x+26=\left(2x\right)^2-2.2x.5+25+1=\left(2x-5\right)^2+1\)

Vì \(\left(2x-5\right)^2\ge0\Rightarrow B=\left(2x-5\right)^2+1\ge1\)

Dấu "=" xảy ra khi x = 5/2

Vậy Bmin=1 khi x=5/2

28 tháng 3 2019

a. giá trị nhỏ nhất của B=3 khi và chỉ khi x=y=1006

11 tháng 8 2017

Ta có :\(\left(x-2011\right)^2\ge0\) 

\(|y-2012|\ge0\)

\(\Rightarrow\left(x-2011\right)^2+|y-2012|+2013\ge2013\)

Để A đạt giá trị nhỏ nhất thì dấu " = " xảy ra khi :

\(A=2013\)

23 tháng 12 2020

A = x2 + x + 1 = ( x2 + x + 1/4 ) + 3/4 = ( x + 1/2 )2 + 3/4 ≥ 3/4 ∀ x

Dấu "=" xảy ra khi x = -1/2

=> MinA = 3/4 <=> x = -1/2

B = -x2 - 4x + 12 = -( x2 + 4x + 4 ) + 16 = -( x + 2 )2 + 16 ≤ 16 ∀ x

Dấu "=" xảy ra khi x = -2

=> MaxB = 16 <=> x = -2

C = \(\frac{5}{x^2+6}\)

Ta có : x2 + 6 ≥ 6 ∀ x

<=> \(\frac{1}{x^2+6}\le\frac{1}{6}\forall x\)

<=> \(\frac{5}{x^2+6}\le\frac{5}{6}\forall x\)

Dấu "=" xảy ra khi x = 0

=> MaxC = 5/6 <=> x = 0

23 tháng 10 2019

\(x^2+7x+12=x^2+3x+4x+12=x\left(x+3\right)+4\left(x+3\right)=\left(x+3\right)\left(x+4\right)\)

=> \(B=\left(x+3\right)\left(x+4\right)\left(x-2\right)\left(x-1\right)\)

\(=\left[\left(x+3\right)\left(x-1\right)\right]\left[\left(x+4\right)\left(x-2\right)\right]+2013\)

\(=\left[x^2+2x-3\right]\left[x^2+2x-8\right]+2013\)

Đặt : \(t=x^2+2x-3\)

Ta có: \(B=t\left(t-5\right)+2013=t^2-5t+2013=t^2-2.t.\frac{5}{2}+\frac{25}{4}-\frac{25}{4}+2013\)

\(=\left(t-\frac{5}{2}\right)^2+\frac{8027}{4}\ge\frac{8027}{4}\)

"=" xảy ra <=> \(t=\frac{5}{2}\Leftrightarrow x^2+2x-3=\frac{5}{2}\Leftrightarrow\left(x+1\right)^2=\frac{13}{2}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{\frac{13}{2}}-1\\x=-\sqrt{\frac{13}{2}}-1\end{cases}}\)(tm)

Vậy min B = 8027/4 tại x =....