Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = x2 + x + 1 = ( x2 + x + 1/4 ) + 3/4 = ( x + 1/2 )2 + 3/4 ≥ 3/4 ∀ x
Dấu "=" xảy ra khi x = -1/2
=> MinA = 3/4 <=> x = -1/2
B = -x2 - 4x + 12 = -( x2 + 4x + 4 ) + 16 = -( x + 2 )2 + 16 ≤ 16 ∀ x
Dấu "=" xảy ra khi x = -2
=> MaxB = 16 <=> x = -2
C = \(\frac{5}{x^2+6}\)
Ta có : x2 + 6 ≥ 6 ∀ x
<=> \(\frac{1}{x^2+6}\le\frac{1}{6}\forall x\)
<=> \(\frac{5}{x^2+6}\le\frac{5}{6}\forall x\)
Dấu "=" xảy ra khi x = 0
=> MaxC = 5/6 <=> x = 0
Ta có : A = x2 + 8x + 16 - 16
=> A = (x2 + 8x + 16) - 16
=> A = (x + 4)2 - 16
Vì (x + 4)2 \(\ge0\forall x\)
Nên : A = (x + 4)2 - 16 \(\ge-16\forall x\)
Vậy Amin = -16 khi x = -4
\(A=x^2+8x\)
\(=x^2+2.x.4+16-16\)
\(=\left(x+4\right)^2-16\)
\(\Rightarrow A\ge-16\forall x\)
Dấu ''='' xảy ra khi và chỉ khi: x + 4 = 0<=> x=-4
Vậy giá trị nhỏ nhất của A là -16 khi x =- 4
b, \(B=-2x^2+8x-15\)
\(=-2\left(x^2-4x+\frac{15}{2}\right)\)
\(=-2\left(x^2-2.x.2+4+\frac{7}{2}\right)\)
\(=-\left(x-2\right)^2-7\)
\(\Rightarrow B\le-7\forall x\)
Dấu ''='' xảy ra khi và chỉ khi: x - 2 = 0 <=> x =2
Vậy giá trị lớn nhất của B là -7 khi x =2.
A = x2 + 4x + 7
= ( x2 + 4x + 4 ) + 3
= ( x + 2 )2 + 3
( x + 2 )2 ≥ 0 ∀ x => ( x + 2 )2 + 3 ≥ 3
Đẳng thức xảy ra <=> x + 2 = 0 => x = -2
=> MinA = 3 <=> x = -2
B = 2x2 - 6x
= 2( x2 - 3x + 9/4 ) - 9/2
= 2( x - 3/2 )2 - 9/2
2( x - 3/2 )2 ≥ 0 ∀ x => 2( x - 3/2 )2 -9/2 ≥ -9/2
Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2
=> MinB = -9/2 <=> x = 3/2
C = -2x2 + 8x - 15
= -2( x2 - 4x + 4 ) - 7
= -2( x - 2 )2 - 7
-2( x - 2 )2 ≤ 0 ∀ x => -2( x - 2 )2 - 7 ≤ -7
Đẳng thức xảy ra <=> x - 2 = 0 => x = 2
=> MaxC = -7 <=> x = 2
Ta có : 9x2 + 12x + 15
= (3x)2 + 2.3x.2 + 4 + 11
= (3x + 2)2 + 11
Mà (3x + 2)2 \(\ge0\forall x\)
Nên (3x + 2)2 + 11 \(\ge11\forall x\)
Vậy Bmin = 11 dấu "=" sảy ra khi và chỉ khi x = \(-\frac{2}{3}\)
Ta có : A = x2 - 4x - 6
= x2 - 4x + 4 - 10
= (x - 2)2 - 10
Mà (x - 2)2 \(\ge0\forall x\)
=> (x - 2)2 - 10 \(\ge-10\forall x\)
Vậy Amin = -10 dấu "=" sảy ra khi và chỉ khi x = 2