K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=-5x^2-4x+7\)

\(\Leftrightarrow-5A=25x^2+20x-35\)

\(\Leftrightarrow-5A=\left(25x^2+20x+4\right)-39\)

\(\Leftrightarrow-5A=\left(5x+2\right)^2-39\)

Ta có: 

\(\left(5x+2\right)^2-39\ge39\Rightarrow A\le\frac{-39}{5}\)

Dấu '' = '' xảy ra khi: \(x=\frac{-2}{5}\)

1 tháng 4 2018

a) * Nếu M ≥ a ⇔ 1 M ≤ 1 a ;

    * Nếu M ≤ a ⇔ 1 M ≥ 1 a ;

b) Ta có x 2 - 4x + 12 = ( x   -   2 ) 2  + 8 8 hay 1 x 2 + 2 x + 11 ≤ 1 10 ⇒ N ≥ − 1 2  

Giá trị nhỏ nhất của N = − 1 2  khi x = -1.

23 tháng 11 2017

giúp mình với

26 tháng 9 2020

XIN LỖI ! MÌNH KHONG BIẾT

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

23 tháng 6 2021

a)

\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

Daaus = xayr ra khi: x = 2

b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)

Dấu = xảy ra khi x = 3

c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu = xảy ra khi

2x = y và y = 2

=> x = 1 và y = 2

23 tháng 6 2021

a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)

Dấu "=" <=> x = 2

b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)

Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)

c) \(4x^2+2y^2-4xy-4y+1\)

\(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)

\(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

30 tháng 9 2019

Ta có:

a) A = x2 + 6x + 10 = (x2 + 6x + 9) + 1 = (x + 3)2 + 1 \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x + 3 = 0 <=> x = -3

Vậy MinA = 1 <=> x = -3

b) B = 4x2 - 12x + 13 = 4(x2 - 3x + 9/4) + 4 = 4(x - 3/2)2 + 4 \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x - 3/2 = 0 <=> x = 3/2

Vậy MinB = 4 <=> x = 3/2

b: \(x^2-x+1=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

c: \(A=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\forall x\)

Dấu '=' xảy ra khi x=3

d: \(B=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left(x-2\right)^2-1\le-1\forall x\)

Dấu '=' xảy ra khi x=2

2 tháng 12 2019

\(P=\frac{3-4x}{1+x^2}\)đạt gtnn 

\(P=x^2-1\)

\(\Rightarrow-x^2+p+1=0\)

\(\Rightarrow x=\sqrt{p+1}\)

\(\Rightarrow x=-\sqrt{p+1}\)

\(x=\sqrt{p+1}\)

Vậy GTNN \(\hept{\begin{cases}x=-\sqrt{p+1}\\x=\sqrt{p+1}\end{cases}}\)

\(x=\perp\sqrt{p+1}\)