Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=-5x^2-4x+7\)
\(\Leftrightarrow-5A=25x^2+20x-35\)
\(\Leftrightarrow-5A=\left(25x^2+20x+4\right)-39\)
\(\Leftrightarrow-5A=\left(5x+2\right)^2-39\)
Ta có:
\(\left(5x+2\right)^2-39\ge39\Rightarrow A\le\frac{-39}{5}\)
Dấu '' = '' xảy ra khi: \(x=\frac{-2}{5}\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
5x(x2-3) +x2(7-5x)-7x2
=5x3-15x +7x2 -5x3 -7x2
=-15x
thay x=-5, Ta có
(-15).(-5) =75
MÌnh làm tắt mong bạn hiểu
A=5x-x^2 =-(x^2-5x) = -[(x-5/2)^2 -25/4] = -(x-5/2)^2 +25/4 \(\le\) 25/4
Vậy giá trị lớn nhất là 25/4 khi x=5/2
c/4x-x^2+3 =-(x^2-4x+3) = -[(x-2)^2 -1] =-(x-2)^2 +1 \(\le\) 1
Vậy lớn nhất là 1 khi x=2
C= 5-8x-x^2 =-(x^2 +8x-5) = -[(x+4)^2 -21] = -(x+4)^2 +21 \(\le\)21
Vay lớn nhất là 21 khi x=-4
b) mình khỏi ghi đề lại ha :3
=> 2x^2 - 4x + 2 + 3x^2 + 12x + 12 - 25x^2 + 1= 15
sau đó bạn gom lại những số vd như là 4x với 12x,..... rồi tính ra đc là
-20x^2 + 8x + 15 = 15
=> -20x^2 + 8x = 0
=> 2x ( -10x + 4 ) = 0
=> 2x = 0 => x= 0
hoặc -10x +4 = 0
=> -10x = -4
=> x = 4/ 10
a) ( 2x-3)^ 2 - ( 2x + 5) ^ 2 = 18
=> 4x^2 - 12x + 9 - ( 4x^2 + 20x + 25 ) = 18
=> 4x^2 - 12x + 9 - 4x^2 - 20x - 25 = 18
=> (4x^2- 4x^2) + (-12x - 20x) + ( 9 -25 ) = 18
=> 0 - 32x - 16 = 18
=> -32x = 32
=> x = -1
bạn đợi mình type câu b :v
nè bạn Câu hỏi của Hương Linh - Toán lớp 8 - Học toán với OnlineMath
Mình làm phần sườn còn phần kết luận bạn tự làm
a) \(A=x^2-5x+3\)
\(A=x^2-5x+\frac{25}{4}-\frac{13}{4}\)
\(A=\left(x-\frac{5}{2}\right)^2-\frac{13}{4}\)
Có: \(\left(x-\frac{5}{2}\right)^2\ge0\Rightarrow\left(x-\frac{5}{2}\right)^2-\frac{13}{4}\ge-\frac{13}{4}\)
Dấu = xảy ra khi: \(\left(x-\frac{5}{2}\right)^2=0\Rightarrow x-\frac{5}{2}=0\Rightarrow x=\frac{5}{2}\)
Vậy: \(Min_A=-\frac{13}{4}\) tại \(x=\frac{5}{2}\)
b) \(B=\left(-x^2\right)-x\)
\(B=-\left(x^2+x\right)\)
Có: \(x^2\ge x\Rightarrow x^2+x\ge0\Rightarrow-\left(x^2+x\right)\le0\)
Dấu = xảy ra khi: \(-\left(x^2+x\right)=0\Rightarrow x^2+x=0\Rightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}\)
Vậy: \(Max_B=0\) tại \(\orbr{\begin{cases}x=-1\\x=0\end{cases}}\)