Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1,7 + |3,4 - x|
Ta có: |3,4 - x| \(\ge\)0 \(\forall\)x
=> 1,7 + |3,4 - x| \(\ge\)1,7 \(\forall\)x
Dấu "=" xảy ra <=> 3,4 - x = 0 <=> x = 3,4
vậy MinA = 1,7 tại x = 3,4
B = |x + 2,8| - 3,5 (xlđ)
Ta có: |x + 2,7| \(\ge\)0 \(\forall\)x
=> |x + 2,8| - 3,5 \(\ge\)-3,5 \(\forall\)x
Dấu "=" xảy ra <=> x + 2,8 = 0 <=> x = -2,8
Vậy MinB = -3,5 tại x = -2,8
C = |x - 4/7| - 1/2
Ta có: |x - 4/7| \(\ge\)0 \(\forall\)x
=> |x - 4/7| -1/2 \(\ge\)-1/2 \(\forall\)x
Dấu "=" xảy ra <=> x -4/7 = 0 <=> x = 4/7
vậy Min C = -1/2 tại x = 4/7
a) Ta có: \(\left|x-3,5\right|\ge0\) với mọi x
\(\Rightarrow-\left|x-3,5\right|\le0\) với mọi x
\(\Rightarrow0,5-\left|x-3,5\right|\le0,5\) với mọi x
Dấu "=" xảy ra khi và chỉ khi x = 3,5
Vậy MAX A = 0,5 khi x = 3,5
b) Ta có : \(\left|1,4-x\right|\ge0\) với mọi x
\(\Rightarrow-\left|1,4-x\right|\le0\) với mọi x
\(\Rightarrow-\left|1,4-x\right|-2\le-2\) với mọi x
Dấu "=" xảy ra khi và chỉ khi x = 1,4
Vậy MAX B = -2 khi x = 1,4
\(A=0,5-\left|x-3,5\right|\)
Ta có \(\left|x-3,5\right|\)\(\ge\)0 Với mọi x
\(\Rightarrow\) 0,5-\(\left|x-3,5\right|\)\(\le\)0,5 Với mọi x
\(\Rightarrow Amax\) =0,5 khi x-3,5=0
\(\Leftrightarrow\) Amax=0,5 khi x=3,5
B thì tương tự
Bài 1:a/ 1.6-Ix-0.2I=0
Có 2 trường hợp:
TH1: x-0.2=1.6
=> x=1.6+0.2=1.8
TH2: x-0.2=-1.6
=> x=-1.4
b/ Có 2 trường hợp:
TH1:x-1.5=0=>x=1.5
TH2: 2.5-x=0=> x=2.5
Bài 2: a/ Vì Ix-3.5I\(\ge0\)
=> Amax=0.5-0=0.5 khi x=3.5
b/ Vì -I1.4-xI \(\le0\)
Nên Bmax=0-2=-2 khi x=1.4
a, Ta có: |4,3- x| ≥ 0 với mọi x
=> 3,7+|4,3-x| ≥ 3,7 với mọi x
=> A ≥3,7 với mọi x
=> Min A = 3,7
Vì |4,3-x|= 0
=> 4,3-x = 0
=> x = 4,3
Vậy x=4,3 thì A=3,7
b, Ta có: \(\left(2x+\frac{1}{3}\right)^4\text{≥}0\)(vì số mũ chẵn) với mọi x
=> B ≥ 0 với mọi x
=> Min B = 0
Vì \(\left(2x+\frac{1}{3}\right)^4=0\)
=> \(2x+\frac{1}{3}=0\)
=> \(2x=-\frac{1}{3}\)
=> \(x=-\frac{1}{3}.\frac{1}{2}\)
=> \(x=-\frac{1}{6}\)
Vậy \(x=-\frac{1}{6}\)thì B= 0
c, Ta có: |x-4| ≥ 0 với mọi x
=> -|x-4|≤ 0 với mọi x
=> 0,5 - |x-4| ≤ 0,5 với mọi x
=> C ≤ 0,5 với mọi x
=> Max C = 0,5
Vì |x-4|= 0
=> x-4 =0
=> x = 4
Vậy x=4 thì C= 0,5
d, Ta có: \(\left(\frac{4}{9}x-\frac{2}{15}\right)^6\text{ ≥}0\) ( vì số mũ chẵn) với mọi x
=> \(-\left(\frac{4}{9}x-\frac{2}{15}\right)^6 \text{≤}0\)với mọi x
=> \(-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\text{≤}3\)với mọi x
=> D ≤ 3 với mọi x
=> Max D = 3
Vì \(\left(\frac{4}{9}x-\frac{2}{15}\right)^6=0\)
=> \(\frac{4}{9}x-\frac{2}{15}=0\)
=> \(\frac{4}{9}x=\frac{2}{15}\)
=> \(x=\frac{2}{15}.\frac{9}{4}\)
=> \(x=\frac{3}{10}\)
Vậy \(x=\frac{3}{10}\)thì D =3
a)Vì \(-|x-3,5|\le0;\forall x\)
\(\Rightarrow0,5-|x-3,5|\le0,5-0;\forall x\)
Hay \(A\le0,5-0;\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-3,5=0\)
\(\Leftrightarrow x=3,5\)
Vậy MAX A=0,5 \(\Leftrightarrow x=3,5\)
b) Vì \(-|1,4-x|\le0;\forall x\)
\(\Rightarrow-|1,4-x|-2\le0-2;\forall x\)
Hay \(B\le-2;\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow1,4-x=0\)
\(\Leftrightarrow x=1,4\)
Vậy MAX B=-2 \(\Leftrightarrow x=1,4\)