Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\left|3,4-x\right|\) luôn dương nên để C nhỏ nhất thì \(\left|3,4-x\right|\) nhỏ nhất
\(\Rightarrow\left|3,4-x\right|=0\)
\(\Rightarrow3,4-x=0\)
\(\Rightarrow x=3,4\)
Khi \(x=3,4\) thì giá trị của C là 1,7 + 0 = 1,7
Để D nhỏ nhất thì \(\left|x+2,8\right|=3,5\)
Ta có: \(\left|x+2,8\right|=3,5\)
\(\Rightarrow\left\{{}\begin{matrix}x+2,8=3,5\\x+2,8=-3,5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0,7\\x=-6,3\end{matrix}\right.\)
Vậy khi x = 0,7 hoặc x = -6,3 thì D = 3,5 - 3,5 = 0
a)Vì \(-|x-3,5|\le0;\forall x\)
\(\Rightarrow0,5-|x-3,5|\le0,5-0;\forall x\)
Hay \(A\le0,5-0;\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-3,5=0\)
\(\Leftrightarrow x=3,5\)
Vậy MAX A=0,5 \(\Leftrightarrow x=3,5\)
b) Vì \(-|1,4-x|\le0;\forall x\)
\(\Rightarrow-|1,4-x|-2\le0-2;\forall x\)
Hay \(B\le-2;\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow1,4-x=0\)
\(\Leftrightarrow x=1,4\)
Vậy MAX B=-2 \(\Leftrightarrow x=1,4\)
1/ Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{2^2}{4}=\frac{4}{4}=1\)
Dấu "=" xảy ra khi x=y=1
Máy mình bị lỗi nên ko nhìn được các bài tiếp theo
Chúc bạn học tốt :)
Ta có : x+y=2 => x=2-y. Thay vào bt ta đc : xy= (2-y).y = 2y -y^2
Vì y^2 >= 0 =>2y-y^2 nhỏ hơn hoặc bằng 0
a) Ta có: \(\left|x\right|\ge0\left(\forall x\in Z\right)\)
\(\Rightarrow A=\left|x\right|+\frac{6}{13}\ge\frac{6}{13}\)
Dấu "=" xảy ra "=" |x| = 0 <=> x = 0
Vậy Amin = 6/13 khi và chỉ khi x = 0
b) Ta có: \(\left|x+2,8\right|\ge0\left(\forall x\in Z\right)\)
\(\Rightarrow B=\left|x+2,8\right|-7,9=\left|x+2,8\right|+\left(-7,9\right)\ge-7,9\)
Dấu "=" xảy ra <=> |x+2,8| = 0 <=> x + 2,8 = 0 <=> x = -2,8
Vậy Bmin = -7,9 khi và chỉ khi x = -2,8
c) Ta có: \(\left|x+1,5\right|\ge0\left(\forall x\in Z\right)\)
\(\Rightarrow C=\left|x+1,5\right|-5,7=\left|x+1,5\right|+\left(-5,7\right)\ge-5,7\)
Dấu "=" xảy ra <=> |x+1,5| = 0 <=> x + 1,5 = 0 <=> x = -1,5
Vậy Cmin = -5,7 khi và chỉ khi x = -1,5
phần A, B bạn làm như bạn nguyễn quang trung còn C,D làm theo mình:
\(C=\frac{2017}{2018}-\left|x-\frac{3}{5}\right|\)
vì \(\left|x-\frac{3}{5}\right|\ge0\forall x\)
nên \(\frac{2017}{2018}-\left|x-\frac{3}{5}\right|\le\frac{2017}{2018}\forall x\)
vậy \(MaxC=\frac{2017}{2018}\Leftrightarrow x=\frac{3}{5}\)
\(D=\left|x-2\right|+\left|y+1\right|+3\)
\(\left|x-2\right|\ge0;\left|y+1\right|\ge0\forall x\)
nên \(\left|x-2\right|+\left|y+1\right|+3\ge3\forall x\)
vậy \(MinA=3\Leftrightarrow x=2;y=-1\)
a ) Ta có : A = \(\left|x+\frac{1}{2}\right|\ge0\forall x\)
Vậy Amin = 0 , khi x = \(-\frac{1}{2}\)
b) \(B=\left|\frac{3}{7}-x\right|+\frac{1}{9}\)
Mà : \(\left|\frac{3}{7}-x\right|\ge0\forall x\)
Nên : \(B=\left|\frac{3}{7}-x\right|+\frac{1}{9}\ge\frac{1}{9}\forall x\)
Vậy Bmin = \(\frac{1}{9}\) kh x = \(\frac{3}{7}\)
A = 1,7 + |3,4 - x|
Ta có: |3,4 - x| \(\ge\)0 \(\forall\)x
=> 1,7 + |3,4 - x| \(\ge\)1,7 \(\forall\)x
Dấu "=" xảy ra <=> 3,4 - x = 0 <=> x = 3,4
vậy MinA = 1,7 tại x = 3,4
B = |x + 2,8| - 3,5 (xlđ)
Ta có: |x + 2,7| \(\ge\)0 \(\forall\)x
=> |x + 2,8| - 3,5 \(\ge\)-3,5 \(\forall\)x
Dấu "=" xảy ra <=> x + 2,8 = 0 <=> x = -2,8
Vậy MinB = -3,5 tại x = -2,8
C = |x - 4/7| - 1/2
Ta có: |x - 4/7| \(\ge\)0 \(\forall\)x
=> |x - 4/7| -1/2 \(\ge\)-1/2 \(\forall\)x
Dấu "=" xảy ra <=> x -4/7 = 0 <=> x = 4/7
vậy Min C = -1/2 tại x = 4/7