Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét P\(=x^2+y^2-x+6y+10\)
\(P=x^2-x+y^2+6y+10\)
\(P=x^2-2x\frac{1}{2}+\frac{1}{4}+y^2+6y+9+\frac{3}{4}\)
\(P=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\)
Vì\(\left(x-\frac{1}{2}\right)^2\ge0\)với mọi x
\(\left(y+3\right)^2\ge0\)với mọi y
\(\rightarrow P\ge\frac{3}{4}\)với mọi x, y
->Pnhỏ nhất =\(\frac{3}{4}\)khi \(\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2\\\left(y+3\right)^2=0\end{cases}=0}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}\)
áp dụng BĐT côsi ta có : \(\frac{x^2}{y^2}+\frac{y^2}{x^2}>=2\sqrt{\frac{x^2}{y^2}\cdot\frac{y^2}{x^2}}=2;\frac{x}{y}+\frac{y}{x}>=2\)
=> B>= 2-3*2+5=1
Dấu bằng khi x=y=1
\(x^2+y^2=x+y\\ \Leftrightarrow x^2-x+y^2-y=0\\ \Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y-\dfrac{1}{2}\right)^2=\dfrac{1}{2}\\ A=x+y=\left(x-\dfrac{1}{2}\right)+\left(y-\dfrac{1}{2}\right)+1\)
Áp dụng Bunhiacopski:
\(\left[\left(x-\dfrac{1}{2}\right)+\left(y-\dfrac{1}{2}\right)\right]^2\le\left(1^2+1^2\right)\left[\left(x-\dfrac{1}{2}\right)^2+\left(y-\dfrac{1}{2}\right)^2\right]=2\cdot\dfrac{1}{2}=1\\ \Leftrightarrow A\le1+1=2\)\(A_{max}=2\Leftrightarrow x=y=1\)
\(x^2+y^2\ge0\Rightarrow x+y=x^2+y^2\ge0\)
\(A_{min}=0\) khi \(x=y=0\)
1/ B = (x+y)((x+y)2 - 3xy)+(x+y)2 - 2xy = 2 - 5xy = 2 - 5x(1-x)=5x2 - 5x + 2 = (x√5 - √5 /2)2 +3/4 >= 3/4
Đạt GTNN là 3/4 khi x=y=1/2
2/ P = xy = x(6-x)=-x2 +6x = 9 - (x-3)2 <=9
GTLN là 9 khi x=y=3