K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2018

Xét P\(=x^2+y^2-x+6y+10\)

\(P=x^2-x+y^2+6y+10\)

\(P=x^2-2x\frac{1}{2}+\frac{1}{4}+y^2+6y+9+\frac{3}{4}\)

\(P=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\)

\(\left(x-\frac{1}{2}\right)^2\ge0\)với mọi x

    \(\left(y+3\right)^2\ge0\)với mọi y

\(\rightarrow P\ge\frac{3}{4}\)với mọi x, y

->Pnhỏ nhất =\(\frac{3}{4}\)khi \(\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2\\\left(y+3\right)^2=0\end{cases}=0}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}\)

4 tháng 12 2018

Ta có: M =  x 2  +  y 2  – x + 6y + 10 = ( y 2  + 6y + 9) + ( x 2  – x + 1)

= y + 3 2  + ( x 2  – 2.1/2 x + 1/4) + 3/4 =  y + 3 2  + x - 1 / 2 2  + 3/4

Vì  y + 3 2  ≥ 0 và  x - 1 / 2 2  ≥ 0 nên  y + 3 2  +  x - 1 / 2 2  ≥ 0

⇒ M =  y + 3 2  +  x - 1 / 2 2  + 3/4 ≥ 3/4

⇒ M = 3/4 khi Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy M = 3/4 là giá trị nhỏ nhất tại y = -3 và x = 1/2

AH
Akai Haruma
Giáo viên
16 tháng 7 2021

Lời giải:

a. Áp dụng BĐT Cô-si:

$x^4+9\geq 6x^2$

$y^4+9\geq 6y^2$

$\Rightarrow x^4+y^4+18\geq 6(x^2+y^2)$

$A+18\geq 36$

$A\geq 18$

Vậy GTNN của $A$ là $18$ khi $x^2=y^2=3$

b.

$(x-y)^2\geq 0$

$\Leftrightarrow x^2+y^2\geq 2xy$

$\Leftrightarrow 2(x^2+y^2)\geq (x+y)^2$

$\Leftrightarrow 12\geq (x+y)^2$

$\Rightarrow B=x+y\leq \sqrt{12}$. Vậy $B$ max bằng $\sqrt{12}$ khi $x=y=\sqrt{3}$

$(x-y)^2\geq 0$

$\Leftrightarrow x^2+y^2\geq 2xy$

$\Leftrightarrow 6\geq 2C$

$\Leftrightarrow C\leq 3$. Vậy $C_{\max}=3$. Giá trị này đạt tại $x=y=-\sqrt{3}$

22 tháng 5 2021

`A=x^4-6x^3+18x^2-6xy+y^2+2012`
`=x^4-6x^3+9x^2+9x^2-6xy+y^2+2012`
`=(x^2-x)^2+(3x-y)^2+2012>=2012`
Dấu "=" xảy ra khi:
$\begin{cases}x=x^2\\y=3x\end{cases}$
`<=>` $\left[ \begin{array}{l}\begin{cases}x=0\\y=3x=0\\\end{cases}\\\begin{cases}x=1\\y=3x=3\\\end{cases}\end{array} \right.$
Vậy `min_A=2012<=>` $\left[ \begin{array}{l}x=y=0\\\begin{cases}x=1\\y=3\end{cases}\end{array} \right.$

NV
22 tháng 4 2021

\(A=x^2+y^2+\left(\dfrac{1}{2}\right)^2-2xy+2.\dfrac{1}{2}x-2.\dfrac{1}{2}.y+\dfrac{3}{4}\)

\(A=\left(x-y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(A_{min}=\dfrac{3}{4}\) khi \(x-y+\dfrac{1}{2}=0\)

12 tháng 4 2018

Ta có : 

\(x^2-4x+5=\left(x^2-2.2x+2^2\right)+1=\left(x-2\right)^2+1\ge1>0\)

Vậy đa thức \(x^2-4x+5\) vô nghiệm với mọi giá trị của x 

Chúc bạn học tốt ~ 

29 tháng 12 2021

=(x-y-1)(x+y+1)

=100x86=8600

a) \(P=x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\ge4\)

\(MinP=4\Leftrightarrow x-1=0\Rightarrow x=1\)

b) \(Q=2x^2-6x\)

\(=2\left(x^2-3x\right)\)

\(=2\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)\)

\(=2\left(\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right)\)

\(=-\frac{9}{2}-2\left(x-\frac{3}{2}\right)^2\le\frac{-9}{2}\)

\(MinQ=\frac{-9}{2}\Leftrightarrow x-\frac{3}{2}=0\Rightarrow x=\frac{3}{2}\)

9 tháng 8 2016

M=x^2+y^2-x+6y+10

M=(x^2-x+1/4)+(y^2+6y+9)+3/4

M=(x-1/2)^2+(y+3)^2+3/4

\(minM=\frac{3}{4}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}\)

30 tháng 6 2021

\(1.\)

\(-17-\left(x-3\right)^2\)

Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)

\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)

\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)

Dấu '' = '' xảy ra khi: 

\(\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy \(Max=-17\)khi \(x=3\)

30 tháng 6 2021

\(2.\)

\(A=x\left(x+1\right)+\frac{3}{2}\)

\(A=x^2+x+\frac{3}{2}\)

\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)

30 tháng 10 2021

Giải

Ta có: \(A\left(x\right)=4x^2+6x+10\)

\(\Rightarrow A\left(x\right)=4x^2+4.\frac{3}{2}x+4.\frac{5}{2}\)(Biến tất cả các hạng tử sao cho có nhân tử chung là 4 để làm mất hệ số 4 ở x^2)

\(\Rightarrow A\left(x\right)=4\left(x^2+\frac{3}{2}x+\frac{5}{2}\right)\)(Đấy, thấy số 4 đã ra ngoài chưa)

\(\Rightarrow A\left(x\right)=4\left(x^2+2.\frac{3}{4}x+\frac{9}{16}+\frac{31}{16}\right)\)

(Giờ đây ta lại biến đổi sao cho có hằng đẳng thức và mình đã tách 5/2 thành 9/16 + 31/16)

\(\Rightarrow A\left(x\right)=4\left\{\left[x^2+2.\frac{3}{4}x+\left(\frac{3}{4}\right)^2\right]+\frac{31}{16}\right\}\)(Cho vào trong ngoặc dễ thấy đc hằng đẳng thức)

\(\Rightarrow A\left(x\right)=4\left[\left(x+\frac{3}{4}\right)^2+\frac{31}{16}\right]\)(Đã sử dụng hằng đẳng thức \(A^2+2AB+B^2=\left(A+B\right)^2\))

Vì \(\left(x+\frac{3}{4}\right)^2\ge0\)(đây là điều hiển nhiên, bình phương của một số luôn lớn hơn hoặc bằng 0)

Nên \(\left(x+\frac{3}{4}\right)^2+\frac{31}{16}\ge\frac{31}{16}\)

\(\Rightarrow A\left(x\right)=4\left[\left(x+\frac{3}{4}\right)^2+\frac{31}{16}\right]\ge\frac{31}{4}\)(Nhân thêm 4 vào cả hai vế)

[A(x) sẽ nhỏ nhất nếu dấu lớn hơn hoặc bằng chuyển thành dấu bằng)]

Dấu "=" xảy ra khi và chỉ khi \(\left(x+\frac{3}{4}\right)^2=0\Leftrightarrow x+\frac{3}{4}=0\Leftrightarrow x=-\frac{3}{4}\)

\(\text{Vậy giá trị nhỏ nhất của A(x) là } \dfrac{31}4 \text{khi và chỉ khi } x=-\dfrac34 \)