K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2016

\(P\left(x\right)=6x^2-12x-30=6\left(x^2-2x-5\right)\)

\(P\left(x\right)=6\left(x^2-x-x+1-6\right)\)

\(=6\left[x\left(x-1\right)-\left(x-1\right)-6\right]\)

\(=6\left[\left(x-1\right)\left(x-1\right)-6\right]=6\left[\left(x-1\right)^2-6\right]=6\left(x-1\right)^2-36\)

\(6\left(x-1\right)^2\ge0\Rightarrow6\left(x-1\right)^2-36\ge36\)

=>GTNN của P(x) là -36

dấu "=" xảy ra <=> \(6\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy...................

19 tháng 5 2016

P(x)=6x2 - 12x - 30

=6(x2-2x-5)

ta thấy:

..... tự làm nhé

dấu "="xảy ra khi x=1

vậy GTLN của P(x)=-36 khi x=1

14 tháng 2 2018

x^2 - 2xy + 6y^2 - 12x + 2y +45 
= x^2 - 2x(y+6) + (y+6)^2 - (y+6)^2 + 6y^2 +2y + 45 
= (x - y - 6)^2 - y^2 - 12y - 36 + 6y^2 + 2y + 45 
= (x - y - 6)^2 + 5y^2 - 10y + 9 
= (x - y - 6)^2 + 5.(y^2 - 2y +1) + 4 
= (x - y - 6)^2 + 5.(y-1)^2 + 4 
=>> MIN = 4 khi (x;y) = {(7;1)}

14 tháng 2 2018

\(A=x^2-2xy+6y^2-12x+2y+45\)

\(=x^2+y^2+36-2xy-12x+12y+5y^2-10y+5+4\)

\(=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\)

GTNN A = 4 Khi: \(\hept{\begin{cases}y-1=0\\x-y-6=0\end{cases}\Rightarrow\hept{\begin{cases}y=1\\x=7\end{cases}}}\)

2 tháng 9 2016

\(A=x^2-12x+18\)

\(A=x^2-2.x.6+36-36+18\)

\(A=\left(x-6\right)^2-18\)

Vì \(\left(x-6\right)^2\ge0\)

Nên \(\left(x-6\right)^2-18\ge-18\)

Vậy \(A_{MIN}=-18\Leftrightarrow x-6=0\Leftrightarrow x=6\)

2 tháng 9 2016

Ta có : \(A=x^2-12x+18\)

                 \(=x^2-2.x.6+6^2-18\)

                  \(=\left(x-6\right)^2-18\)

Có : \(\left(x-6\right)^2\ge0\)

\(\Rightarrow\left(x-6\right)^2-18\ge-18\)

Dấu " = " xảy ra khi \(x-6=0\)

                                   \(x=6\)

Vậy \(MIN_A=-18\) khi \(x=6\)

3 tháng 2 2018

Đặt A = |x-50|+|x-30|

= |50-x|+|x-30|

>= |50-x+x-30| = 20

Dấu "=" xảy ra <=> (50-x).(x-30) > = 0 <=> 30 < = x < = 50

Vậy GTNN của A = 20 <=> 30 < = x < = 50

Tk mk nha

3 tháng 2 2018

làm giúp tôi với nhớ giải chi tiết nha

18 tháng 5 2016

\(M=x^2+2x+2=\left(x^2+x+x+1\right)+1\)

\(M=x\left(x+1\right)+1\left(x+1\right)+1=\left(x+1\right)\left(x+1\right)+1\)

\(M=\left(x+1\right)^2+1\)

\(\left(x+1\right)^2\ge0\) với mọi x

=>\(\left(x+1\right)^2+1\ge1\) với mọi x

=>GTNN của M là 1

Dấu "=" xảy ra <=> x+1=0<=>x=-1

18 tháng 5 2016

Mmin=1 khi x=-1

11 tháng 7 2019

a) Ta có: \(\left|x+\frac{3}{2}\right|\ge0\forall x\)

 Hay : P \(\ge\)\(\forall\)x

Dấu "=" xảy ra khi: \(x+\frac{3}{2}=0\) <=> \(x=-\frac{3}{2}\)

Vậy Pmin = 0 tại x  = -3/2

b) Ta có: \(\left|3-x\right|\ge0\forall x\)

=> \(\left|3-x\right|+\frac{2}{5}\ge\frac{2}{5}\forall x\)

hay P \(\ge\)2/5 \(\forall\)x

Dấu "=" xảy ra khi: 3 - x = 0 <=> x = 3

Vậy Pmin = 2/5 tại x = 3

11 tháng 7 2019

a)Có giá trị tuyệt đối của x+3/2 >=0 với mọi x

=> P>=0 với mọi x

P=0 khi x+3/2=0 <=> x=-3/2

Vậy P có giá trị nhỏ nhất là 0 khi x=-3/2

5 tháng 7 2018

a) Ta có: \(A=4x^2-12x+15=\left(2x-3\right)^2+6\)

Vì \(\left(2x-3\right)^2\ge0\left(\forall x\in Z\right)\)

\(\Rightarrow A=\left(2x-3\right)^2+6\ge6\)

Dấu "=" xảy ra \(\Leftrightarrow2x-3=0\Leftrightarrow x=\frac{3}{2}\)

Vậy Amin = 6 khi và chỉ khi x = 3/2

b) \(B=x^2-x+1=x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\)

                                    \(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra <=> x - 1/2 = 0 <=> x = 1/2

Vậy Bmin = 3/4 khi và chỉ khi x = 1/2