\(\sqrt{\left(2x-1\right)^2+4}\)\(+3|4y-1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2020

Ta có: \(P=\sqrt{\left(2x-1\right)^2+4}+3\left|4y-1\right|+2019\)

\(\ge\sqrt{4}+3\cdot0+2019=2021\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(2x-1\right)^2=0\\\left|4y-1\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{4}\end{cases}}\)

Vậy Min(P) = 2021 khi \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{4}\end{cases}}\)

24 tháng 11 2016

Ta có: (2x+1)^2 lớn hơn hoặc bằng 0 suy ra (2x+1)^2+4 lớn hơn hoặc bằng 0 suy ra căn (2x+1)+4 lớn hơn hoặc bằng 0

Lại có:|4y^2-1|lớn hơn hoặc bằng 0 suy ra 3.|4y^2-1| lớn hơn hoặc bằng 0 

nên GTNN của A =5 khi và chỉ khi (2x+1)^2+4=0 và 4y^2-1=0

Với (2x-1)^2-4=0 suy ra (2x+1)^2=-4 suy ra 2x+2= -2 hoặc 2. Nếu 2x+1=-2 suy ra x=-3/2; nếu 2x+1=2 thì x=1/2

Với 4y^2-1=0 suy ra 4y^2=1 suy ra y^2=1/4 suy ra y=1/2 và y=-1/2

24 tháng 11 2016

giá trị nhỏ nhất là 10 đạt đc khi x = 0,5 và y = 0

g

4 tháng 6 2018

A=(2x-3)2+4/9

MinA đạt được khi và chỉ khi (2x-3)2+4/9=4/9

<=> (2x-3)2=0

<=> x=1,5

Vậy MinA=4/9 đạt được khi x=1,5

b, Ta có:

|2x-3/4||\(\ge\)0

=> |2x-3/4|-1/2 \(\ge\) -1/2

MinA=-1/2 đạt được khi và chỉ khi

|2x-3/4|=0

<=>x=3/8

Vậy MinA=-1/2 đạt được khi x=3/8

òi mấy câu còn lại chú cứ làm tương tự không hiểu ib hỏi anh

4 tháng 6 2018

c/ Ta có \(\left|x\right|\ge x\)(BĐT giá trị tuyệt đối)

=> \(x+\left|x\right|\ge x+x=2x\)

Vậy GTNN của C là 2x.

d/ Ta có \(x\ge1\)

=> \(\sqrt{x-1}\ge0\)với \(x\ge1\)

=> \(\sqrt{x-1}+5\ge5\)

Vậy GTNN của D là 5.

12 tháng 12 2017

1/ \(A=3\left|2x-1\right|-5\)

Ta có: \(\left|2x-1\right|\ge0\)

\(\Rightarrow3\left|2x-1\right|\ge0\)

\(\Rightarrow3\left|2x-1\right|-5\ge-5\)

Để A nhỏ nhất thì \(3\left|2x-1\right|-5\)nhỏ nhất

Vậy \(Min_A=-5\)

21 tháng 12 2019

1)

a) \(A=3.\left|1-2x\right|+2019\)

Ta có \(\left|1-2x\right|\ge0\) \(\forall x.\)

\(\Rightarrow3.\left|1-2x\right|\ge0\) \(\forall x.\)

\(\Rightarrow3.\left|1-2x\right|+2019\ge2019\) \(\forall x.\)

\(\Rightarrow A\ge2019.\)

Dấu '' = '' xảy ra khi:

\(1-2x=0\)

\(\Rightarrow2x=1-0\)

\(\Rightarrow2x=1\)

\(\Rightarrow x=\frac{1}{2}.\)

Vậy \(MIN_A=2019\) khi \(x=\frac{1}{2}.\)

b) \(B=\left(2x^2+1\right)^4-3\)

Ta có \(\left(2x^2+1\right)^4\ge0\) \(\forall x.\)

\(\Rightarrow\left(2x^2+1\right)^4-3\ge-3\) \(\forall x.\)

\(\Rightarrow B\ge-3.\)

Dấu '' = '' xảy ra khi:

\(\left(2x^2+1\right)^4=0\)

\(\Rightarrow2x^2+1=0\)

\(\Rightarrow2x^2=0-1\)

\(\Rightarrow2x^2=-1\)

\(\Rightarrow x^2=-\frac{1}{2}\)

\(\Rightarrow\) Vô lí vì \(x^2\ge0\) \(\forall x.\)

\(\Rightarrow x^2\ne-\frac{1}{2}\)

\(\Rightarrow x\in\varnothing.\)

Vậy \(B\) không có giá trị nhỏ nhất.

Chúc bạn học tốt!

22 tháng 12 2019

Thanks bạn nha

28 tháng 8 2016

\(B=1,5+\left|2-x\right|\)

Có: \(\left|2-x\right|\ge0\)

\(\Rightarrow1,5+\left|2-x\right|\ge1,5\)

Dấu = xảy ra khi: \(2-x=0\Rightarrow x=2\)

Vậy:  \(Min_A=1,5\)tại \(x=2\)

28 tháng 8 2016

\(C=-\left|x+2\right|\) . Có: \(-\left|x-2\right|\le0\)

Dấu = xảy ra khi: \(x+2=0\Rightarrow x=-2\)

Vậy: \(Max_C=0\) tại \(x=-2\)

14 tháng 3 2020

Giá trị lớn nhất nhá

\(a,-\left(x-3\right)^2+2\)

Ta thấy \(\left(x-3\right)^2\ge0\Rightarrow-\left(x-3\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-3\right)^2+2\le2\)

Dấu "=" xảy ra khi \(x-3=0\Leftrightarrow x=3\)

...

\(b,-\left|2x-1\right|-5\)

Ta thấy \(\left|2x-1\right|\ge0\Rightarrow-\left|2x-1\right|\le0\forall x\)

\(\Rightarrow-\left|2x-1\right|-5\le-5\)

Dấu "=" xảy ra khi \(2x-1=0\Leftrightarrow x=\frac{1}{2}\)

....

c, \(\sqrt{3}-x^2\)

Ta thấy \(x^2\ge0\Rightarrow-x^2\le0\forall x\)

\(\Rightarrow\sqrt{3}-x^2\le\sqrt{3}\)

Dấu "=" xảy ra khi \(x=0\)

...

16 tháng 3 2020

sao lại lớn nhất!!Phúc Nightcore

9 tháng 7 2016
  • Vì \(\left|x-\frac{1}{2}\right|\ge0\)

=>\(A=\frac{3}{8}+\left|x-\frac{1}{2}\right|\ge\frac{3}{8}\)

A đạt giá trị nhỏ nhất <=> \(A=\frac{3}{8}+\left|x-\frac{1}{2}\right|=\frac{3}{8}\)

=>\(\left|x-\frac{1}{2}\right|=0\)

=>\(x-\frac{1}{2}=0\)

=>x=\(\frac{1}{2}\)

Vậy A đạt giá trị nhỏ nhất là \(\frac{3}{8}\) khi x=\(\frac{1}{2}\)

  • Vì \(\left|2x+4\right|\ge0\)

=>\(B=\frac{6}{5}-\left|2x+4\right|\le\frac{6}{5}\)

B đạt giá trị lớn nhất <=> \(B=\frac{6}{5}-\left|2x+4\right|=\frac{6}{5}\)

<=>|2x+4|=0

<=>2x+4=0

<=>2x=-4

<=>x=-2

Vậy B đạt giá trị lớn nhất là \(\frac{6}{5}\) khi x=-2

8 tháng 9 2019

Hai bài này có mấy cái bình phương sẵn rồi nên chỉ sài cái bất đẳng thức \(A^2\ge0\)là được rồi

a/Ta có \(\left(2x+\frac{1}{3}\right)^4\ge0\)

Do đó \(\left(2x+\frac{1}{3}\right)^4-1\ge0-1\)

\(\Leftrightarrow A\ge-1\)

Tới đây vì A lớn hơn hoặc bằng -1 nên giá trị nhỏ nhất của A là -1

Vậy Giá trị nhỏ nhất của A là -1

b/Bạn làm hệt như câu a, với lại nếu bạn suy ra \(A\ge-1\)thì bạn kết luận luôn Giá trị nhỏ nhất của A là -1

17 tháng 4 2020

eeeee