\(P=\dfrac{1}{1+a^2+b^2}+\dfrac{3}{2ab}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

Đề thiếu dữ kiện để tính gtnn. Bạn coi lại.

24 tháng 6 2017

Phân thức đại số

14 tháng 6 2019

Để em!

\(A=\frac{a}{4}+\frac{1}{a}+\frac{3a}{4}\ge2\sqrt{\frac{a}{4}.\frac{1}{a}}+\frac{3a}{4}\)

\(\ge1+\frac{3.2}{4}=\frac{5}{2}\)

Dấu "=" xảy ra khi a = 2

\(B=a+\frac{1}{a^2}+\frac{1}{4}\ge a+2\sqrt{\frac{1}{4a^2}}\)

\(=a+\frac{1}{a}\ge\frac{5}{2}\) (theo câu a)

Đẳng thức xảy ra khi a = 2

14 tháng 6 2019

\(\text{Ta có : }a\ge2\)

\(A=a+\frac{1}{a}\)

\(A\) đạt giá trị nhỏ nhất khi a nhỏ nhất và \(\frac{1}{a}\)nhỏ nhất

\(\frac{1}{a}\) nhỏ nhất \(\Leftrightarrow\text{ }\)a lớn nhất

\(\Rightarrow\) a = 2

Thay vào biểu thức ta được : 

\(A=2+\frac{1}{2}=\frac{4}{2}+\frac{1}{2}=\frac{5}{2}\)

Vậy GTNN của A = \(\frac{5}{2}\)

\(B=a+\frac{1}{a^2}\)

\(B\) đạt giá trị nhỏ nhất khi a nhỏ nhất và \(\frac{1}{a}\)nhỏ nhất

\(\frac{1}{a^2}\) nhỏ nhất \(\Rightarrow\) \(a^2\) lớn nhất \(\Rightarrow\) a lớn nhất

\(\Rightarrow\) a = 2

Thay a = 2 vào biểu thức ta được : 

\(B=a+\frac{1}{a^2}=2+\frac{1}{2^2}=2+\frac{1}{4}=\frac{8}{4}+\frac{1}{4}=\frac{9}{4}\)

Vậy GTNN của B = \(\frac{9}{4}\)

30 tháng 7 2018

\(A=\dfrac{1}{-x^2+2x-2}\)

A min \(\Leftrightarrow\dfrac{1}{A}\)max

ta có \(\dfrac{1}{A}=-x^2+2x-2=-\left(x^2-2x+2\right)=-\left(x-1\right)^2-1\le-1\)

\(\dfrac{1}{A}\)max= -1 tại x=1

=> A min = -1 tại x=1

\(B=\dfrac{2}{-4x^2+8x-5}\) ( phải là -4x2 nha bn)

B min \(\Leftrightarrow\dfrac{1}{B}\) max

ta có \(\dfrac{1}{B}=\dfrac{-4x^2+8x-5}{2}=\dfrac{-\left(4x^2-8x+5\right)}{2}=\dfrac{-\left(2x-4\right)^2+11}{2}=\dfrac{\left(-2x-4\right)^2}{2}+\dfrac{11}{2}\le\dfrac{11}{2}\)

\(\dfrac{1}{B}\)max=\(\dfrac{11}{2}\) tại x=2

\(\Rightarrow B\) min = \(\dfrac{1}{\dfrac{11}{2}}=\dfrac{2}{11}\) tại x=2

\(A=\dfrac{3}{2x^2+2x+3}=\dfrac{3}{2\left(x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{5}{2}}=\dfrac{3}{2\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{2}}\)

A max \(\Leftrightarrow\dfrac{1}{A}\) min

\(\Leftrightarrow\dfrac{2\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{2}}{3}=\dfrac{2\left(x+\dfrac{1}{2}\right)^2}{3}+\dfrac{\dfrac{5}{2}}{3}=\dfrac{2\left(x+\dfrac{1}{2}\right)^2}{3}+\dfrac{5}{6}\ge\dfrac{5}{6}\)

\(\dfrac{1}{A}\) min = \(\dfrac{5}{6}\)tại x= \(-\dfrac{1}{2}\)

\(\Rightarrow A\)max = \(\dfrac{6}{5}\) tại x= \(-\dfrac{1}{2}\)

B\(=\dfrac{5}{3x^2+4x+15}=\dfrac{5}{3.\left(x^2+\dfrac{4}{3}x+5\right)}=\dfrac{5}{3\left(x^2+2.x.\dfrac{2}{3}+\dfrac{4}{9}+\dfrac{41}{9}\right)}=\dfrac{5}{3\left(x+\dfrac{2}{3}\right)^2+\dfrac{41}{3}}\)

B max \(\Leftrightarrow\dfrac{1}{B}\) min

\(\Leftrightarrow\dfrac{3\left(x+\dfrac{2}{3}\right)^2+\dfrac{41}{3}}{5}=\dfrac{3\left(x+\dfrac{2}{3}\right)^2}{5}+\dfrac{41}{15}\ge\dfrac{41}{15}\)

\(\dfrac{1}{B}\) min = \(\dfrac{41}{15}\) tại x=\(-\dfrac{2}{3}\)

=> \(B\) max = \(\dfrac{15}{41}\) tại x=\(-\dfrac{2}{3}\)

Đây chỉ là gợi ý !! bn pải tự lí luận nha

tik thanghoa

a: \(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}\le\dfrac{x^2}{7}-\dfrac{2x-3}{5}\)

\(\Leftrightarrow2x-3+5x\left(x-2\right)\le5x^2-7\left(2x-3\right)\)

\(\Leftrightarrow2x-3+5x^2-10x< =5x^2-14x+21\)

=>-8x-3<=-14x+21

=>6x<=24

hay x<=4

b: \(\dfrac{6x+1}{18}+\dfrac{x+3}{12}>=\dfrac{5x+3}{6}+\dfrac{12-5x}{9}\)

=>2(6x+1)+3(x+3)>=6(5x+3)+4(12-5x)

=>12x+2+3x+9>=30x+18+48-20x

=>15x+11>=10x+66

=>5x>=55

hay x>=11

16 tháng 5 2018

AM-GM :\(\dfrac{1}{a^4+b^2+2ab^2}=\dfrac{1}{a^4+b^2+ab^2+ab^2}\le\dfrac{1}{4\sqrt[4]{a^6b^6}}\)

\(\Rightarrow Q\le\dfrac{1}{2\sqrt[4]{a^6b^6}}\) (1)

AM - GM : \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{2}{\sqrt{ab}}\Leftrightarrow2\ge\dfrac{2}{\sqrt{ab}}\Leftrightarrow ab\ge1\) (2)

Kết hợp (1) và (2) ta có đpcm

16 tháng 5 2018

khó hiểu vậy ?bucminh

22 tháng 4 2017

Biểu thức có giá trị bằng 2 thì:

Giải bài 33 trang 23 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 33 trang 23 SGK Toán 8 Tập 2 | Giải toán lớp 8
29 tháng 4 2017

a)

2x-3=0 => x=3/2

b)

2x^2 +1 =0 => vô nghiệm

c) x^2 -25 =0 => x=5 loiaj

x=-5 nhân

d)

x^2 -25 =0 => x=5 loại

x=-5 loại

5 tháng 4 2017

Bài 1:

a) Để (1) là pt bậc nhất thì \(m-2\ne0\Leftrightarrow m\ne2\)

---- hình như là còn đk m khác x+2 -------

b) Ta có ; (1) <=> (m-2)x = 2 (*)

7-4x = 2x -5 <=> 6x = 12 <=> x= 2 (**)

Từ (*) và (**) => m-2 = 1 <=> m=3