Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A có giá trị nhỏ nhất khi \(\sqrt{x+2}=0\)
Vậy giá trị nhỏ nhất của A là \(\dfrac{3}{11}\).
b) Ta có: -3\(\sqrt{x-5}\) \(\le0\)
=> B có giá trị lớn nhất khi -3\(\sqrt{x-5}\) = 0
Vậy giá trị lớn nhất của B là \(\dfrac{5}{17}\).
Ta có: \(\dfrac{\sqrt{x}-1}{\sqrt{x} +3}=\dfrac{\sqrt{x}+3-4}{\sqrt{x}+3}=1-\dfrac{4}{\sqrt{x}+3}\)
\(\sqrt{x}\ge0\Rightarrow\sqrt{x}+3\ge3\)
\(\Rightarrow\dfrac{4}{\sqrt{x}+3}\le\dfrac{4}{3}\Rightarrow-\dfrac{4}{\sqrt{x}+3}\ge-\dfrac{4}{3}\\ \Rightarrow1-\dfrac{4}{\sqrt{x}+3}\ge1-\dfrac{4}{3}=-\dfrac{1}{3}\)
Vậy giá trị nhỏ nhất của biểu thức trên là \(-\dfrac{1}{3}\). Dấu bằng xảy ra khi và chỉ khi \(x=0\).
\(E=\left|\sqrt{x}-7\right|+\left|\sqrt{x}-5\right|\)
\(=\left|\sqrt{x}-7\right|+\left|5-\sqrt{x}\right|\)
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(E\ge\left|\sqrt{x}-7+5-\sqrt{x}\right|=2\)
Đẳng thức xảy ra khi \(x=37\)
Vậy với \(x=37\) thì \(E_{Min}=2\)
a) Ta có:
\(\sqrt{x}\ge0\Rightarrow\frac{1}{2}+\sqrt{x}\ge\frac{1}{2}+0=\frac{1}{2}\Rightarrow P_{min}=\frac{1}{2}\) khi và chỉ khi \(\sqrt{x}=0\Rightarrow x=0\)
b) Ta có:
\(2.\sqrt{x-1}\ge0\Rightarrow7-2.\sqrt{x-1}\le7-2.0=7\Rightarrow Q_{max}=7\)khi và chỉ khi \(2.\sqrt{x-1}=0\Rightarrow\sqrt{x-1}=0\Rightarrow x-1=0\Rightarrow x=1\)
Ta có căn(x + 5) + 2/11 >= 2/11 (vì căn (x+5) >= 0)
Vậy A đạt giá trị nhỏ nhất là 2/11 khi và chỉ khi x = -5
Ta có : 3/19 - 3.căn(x - 2) <= 3/19 ( vì -3.căn(x-2) <= 0)
Vậy B đạt giá trị lớn nhất là 3/19 khi và chỉ khi x = 5
C = (căn - 3)/2 có giá trị nguyên nên (căn - 3) chia hết cho 2
Suy ra x là số chính phương lẻ
Vì x < 50 nên x thuộc { 1^2;3^2;5^2;7^2} hay x thuộc {1;9;25;49}
\(ĐK:x\ge0\)
\(E=\left|\sqrt{x}-7\right|+\left|\sqrt{x}-5\right|=\left|7-\sqrt{x}\right|+\left|\sqrt{x}-5\right|\)
\(\ge\left|7-\sqrt{x}+\sqrt{x}-5\right|=2\)
Dấu "=" \(\Leftrightarrow5\le\sqrt{x}\le7\)
\(\Leftrightarrow25\le x\le49\)(Tm ĐK)
Vậy ........