Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có : \(\left|x-2\right|\ge0\)
\(\left|x-10\right|\ge0\)
\(\Rightarrow\left|x-2\right|+\left|x-10\right|+4\ge4\)
Xét : \(\left[\begin{array}{nghiempt}x-2=0\Rightarrow x=2\Rightarrow A=0+8+4=12\\x-10=0\Rightarrow x=10\Rightarrow A=8+0+4=12\end{array}\right.\)
Vậy \(Min_A=12\) tại \(x=2;10\)
Vì |x-2| > 0
|x-10| > 0
=> |x-2|+|x-10|+4 > 0+0+4
hay A > 4
=> GTNN của A bằng 4
Vậy giá trị nhỏ nhất của A là 4.
a, \(16-x^2=0\Leftrightarrow x=\pm4\)
b, Sửa đề: \(\left(x+1\right)^2+2\left|x-1\right|=0\)
<=> \(\hept{\begin{cases}\left(x+1\right)^2=0\\2\left|x-1\right|=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-1\\x=1\end{cases}}\)
c, Sửa đề: \(\left(x+1\right)^2+\left(2y-3\right)^{10}\)
Giải tương tự câu c ta được \(\hept{\begin{cases}x=-1\\y=\frac{3}{2}\end{cases}}\)
d, Tương tự vậy, ta cũng tìm được \(\hept{\begin{cases}x=0\\y=1\end{cases}}\)
a) |x+3/4| >/ 0
|x+3/4| + 1/2 >/ 1/2
MinA= 1/2 <=> x+3/4 =0 hay x= -3/4
b) 2|2x-4/3| >/ 0
2|2x-4/3| -1 >/ -1
MinB = -1 <=> 2|2x-4/3| = 0 hay x=2/3
Bài tiếp théo:
a) -2|x+4| \< 0
-2|x+4| +1 \< 1
MaxA=1 <=> -2|x+4| = 0 hay = -4
b) -3|x-5| \< 0
-3|x-5| + 11/4 \< 11/4
MaxB=11/4 <=> -3|x-5| = 0 hay x=-5
\(A=\left(x-\dfrac{1}{4}\right)^4+\left|x-2y\right|+1\)
vì \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{4}\right)^4\ge0,\forall x\\\left|x-2y\right|\ge0,\forall x;y\end{matrix}\right.\)
\(\Rightarrow A=\left(x-\dfrac{1}{4}\right)^4+\left|x-2y\right|+1\ge1\)
Dấu "=" xảy ra khi và chỉ khi
\(\left\{{}\begin{matrix}x-\dfrac{1}{4}=0\\x-2y=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{4}\\y=\dfrac{x}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{4}\\y=\dfrac{1}{8}\end{matrix}\right.\)
Vậy \(GTNN\left(A\right)=1\left(tạix=\dfrac{1}{4};y=\dfrac{1}{8}\right)\)
Ta có:
(x - 1/4)⁴ ≥ 0 với mọi x ∈ R
(x - 2y)² ≥ 0 với mọi x, y ∈ R
(x - 1/4)⁴ + (x - 2y)² ≥ 0 với mọi x, y ∈ R
(x - 1/4)⁴ + (x - 2y)² + 1 ≥ 1 với mọi x, y ∈ R
Vậy GTNN của A là 1 khi x = 1/4 và y = 1/8
\(A=x^2-4x+10=x^2-4x+4+6=\left(x-2\right)^2+6\ge6\)
Vậy GTNN A là 6 khi x - 2 = 0 <=> x = 2
\(B=\left(1-x\right)\left(3x-4\right)=3x-4-3x^2+4x=-3x^2+7x-4\)
\(=-3\left(x^2-\frac{7}{3}x+\frac{4}{3}\right)=-3\left(x^2-2.\frac{7}{6}x+\frac{49}{36}-\frac{1}{36}\right)=-3\left(x-\frac{7}{6}\right)^2+\frac{1}{12}\ge\frac{1}{12}\)
\(=3\left(x-\frac{7}{6}\right)^2-\frac{1}{12}\le-\frac{1}{12}\)Vậy GTLN B là -1/12 khi x = 7/6
\(C=3x^2-9x+5=3\left(x^2-3x+\frac{5}{3}\right)=3\left(x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{7}{12}\right)\)
\(=3\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\ge-\frac{7}{4}\)Vậy GTNN C là -7/4 khi x = 3/2
\(D=-2x^2+5x+2=-2\left(x^2-\frac{5}{2}x-1\right)=-2\left(x^2-2.\frac{5}{4}x+\frac{25}{16}-\frac{41}{16}\right)\)
\(=-2\left(x-\frac{5}{4}\right)^2+\frac{21}{8}\le\frac{21}{8}\)Vậy GTLN D là 21/8 khi x = 5/4
\(\left|x+1,5\right|\ge0\forall x\)
Dấu " = " xảy ra khi
| x + 1,5 | = 0
x = -1,5
Vậy MinA = 0 <=> x = -1,5
b)
\(\left|x-2\right|\ge0\forall x\Rightarrow\left|x-2\right|-\frac{9}{10}\ge\frac{9}{10}\forall x\)
Dấu " = " xảy ra khi
| x - 2 | = 0
x = 2
Vậy MinA = \(\frac{9}{10}\)<=> x = 2
\(-\left|2x-1\right|\le0\forall x\)
Dấu " = " xảy ra khi :
- | 2x - 1 | = 0
=> x = \(\frac{1}{2}\)
Vậy MaxA = 0 <=> x = \(\frac{1}{2}\)
b)
\(-\left|5x-3\right|\le0\forall x\Rightarrow4-\left|5x-3\right|\le4\)
Dấu " = " xảy ra khi :
- | 5x - 3 | = 0
=> x = \(\frac{3}{5}\)
Vậy MaxB = 4 <=> x = \(\frac{3}{5}\)
Study well
các bạn trả lời chi tiết dùm mình nhé
\(\left(x^2-16\right)+\left|2y-4\right|-10\)
Giá trị nn của \(\left(x^2-16\right)+\left|2y-4\right|-10=-10\Leftrightarrow x=\pm4;y=2\)
Hok tốt