Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm GTNN
Ta có: A = |x - 1| + |x - 4|
=> A = |x - 1| + |4 - x| \(\ge\)|x - 1 + 4 - x| = |3| = 3
=> A \(\ge\)3
Dấu "=" xảy ra <=> (x - 1)(x - 4) \(\ge\)0
<=> \(1\le x\le4\)
Vậy Min A = 3 <=> \(1\le x\le4\)
Tìm GTLN
Ta có: -|x + 2| \(\le\)0 \(\forall\)x
hay A \(\le\)0 \(\forall\)x
Dấu "=" xảy ra <=> x + 2 = 0 <=> x = -2
Vậy Max A = 0 <=> x = -2
Ta có: A = |x - 2019| + |x - 2020|
=> A = |x - 2019| + |2020 - x| \(\ge\)|x - 2019 + 2020 - x| = |1| = 1
Dấu "=" xảy ra <=> \(\left(x-2019\right)\left(2020-x\right)\ge0\)
<=> \(2019\le x\le2020\)
Vậy MinA = 1 <=> 2019 \(\le\)x \(\le\)2020
Mình giống bạn Edogawa Conan nhé
nhé !
Mình mới đăng kí !
\(A=\left|x-9\right|+\left|10-x\right|\)
Ta có:
\(\left|x-9\right|\ge x-9\forall x\)
\(\left|10-x\right|\ge10-x\forall x\)
\(\Rightarrow\left|x-9\right|+\left|10-x\right|\ge x-9+10-x\)
\(\Rightarrow A\ge1\)
Dấu bằng xảy ra
\(\Leftrightarrow\orbr{\begin{cases}x-9\ge0\\10-x\ge0\end{cases}\Leftrightarrow9\le x\le10}\)
Vậy minA = 1 \(\Leftrightarrow9\le x\le10\)
\(B=\left|x-1945\right|+\)\(\left|x-1954\right|\)
Ta có:
\(\left|x-1945\right|\ge x-1945\forall x\)
\(\left|x-1954\right|\ge1954-x\forall x\)
\(\Leftrightarrow\left|x-1945\right|+\left|x-1954\right|\ge x-1945+1954-x\)
\(\Leftrightarrow B\ge9\)
Dấu bằng xảy ra
\(\Leftrightarrow\orbr{\begin{cases}x-1945\ge0\\1954-x\ge0\end{cases}\Leftrightarrow1945\le x\le1954}\)
Vậy minB = 9 \(\Leftrightarrow1945\le x\le1954\)
\(A=\left|x\right|+\left|8-x\right|\ge\left|x+8-x\right|=\left|8\right|=8\)
\(\Rightarrow A_{Min}=8\Leftrightarrow x\ge0\)
Áp dụng BĐT trị tuyệt đối ta được:
\(A=\left|x\right|+\left|8-x\right|\)
\(\ge\left|x+8-x\right|=\left|8\right|=8\)
Dấu "=" xả ra khi và chỉ khi:
\(x\left(8-x\right)\ge0\)
\(\Leftrightarrow0\le x\le8\)
Vậy:\(A_{min}=8\Leftrightarrow0\le x\le8\)
Áp dụng bất đẳng thức GTTĐ \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có :
\(A=\left|x+1\right|+\left|y-2\right|\ge\left|x+1+y-2\right|=\left|x+y-1\right|\)
Thay x+y=5 vào A ta có :
\(A\ge\left|5-1\right|=\left|4\right|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+1\ge0\\y-2\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\y\ge2\end{cases}}}\)
Vậy Amin = 4 <=> x >=-1 và y >=2
\(A=\left|x+1\right|+\left|y-2\right|\ge\left|x+1+y-2\right|=\left|4\right|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}x+1\ge0\\y-2\ge0\end{cases}\Leftrightarrow\orbr{\begin{cases}x\ge-1\\y\ge2\end{cases}}}\)
Vậy:\(A_{Min}=4\Leftrightarrow\hept{\begin{cases}x\ge-1\\y\ge2\end{cases}}\)
Ta có: (x2 - 9)2 \(\ge\)0 \(\forall\)x
|y - 2| \(\ge\)0 \(\forall\)y
=> (x2 - 9)2 + |y - 2| + 10 \(\ge\)10 \(\forall\)x; y
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}}\) => \(\hept{\begin{cases}x^2=9\\y=2\end{cases}}\) => \(\hept{\begin{cases}x=\pm3\\y=2\end{cases}}\)
Vậy Min của B = 10 tại \(\hept{\begin{cases}x=\pm3\\y=2\end{cases}}\)
Với mọi x,y. Có: (x^2-9)^2 lớn hơn hoặc = 0
|y-2| lớn hơn hoặc = 0
=> (x^2-9)^2+|y-2| lớn hơn hoặc = 0
=> (x^2-9)^2+|y-2|+10 lớn hơn hoặc = 10
=> B lớn hớn hoặc = 10
Dấu = xảy ra <=> B=10
<=> (x^2-9)^2=0 |y-2|=0
<=> x^2-9=0 y-2=0
<=> x^2=9 y=2
<=> x=81 hoặc -81
Vậy GTNN B=10 đạt đc khi x=81 hoặc -81, y=2
\(A=\left|x-2\right|+\left|x-9\right|+\left|1945-x\right|\)
\(x\ge9\)
\(A=\left|1945-x-11\right|\)
\(A=\left|1945-11-11\right|\left(min/x=11\right)\)
\(A=\left|1945\right|\)
GTNN = \(\left|1945\right|\)(: