K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2021

\(A=\left|x-9\right|+\left|10-x\right|\)

Ta có:

\(\left|x-9\right|\ge x-9\forall x\)

\(\left|10-x\right|\ge10-x\forall x\)

\(\Rightarrow\left|x-9\right|+\left|10-x\right|\ge x-9+10-x\)

\(\Rightarrow A\ge1\)

Dấu bằng xảy ra

\(\Leftrightarrow\orbr{\begin{cases}x-9\ge0\\10-x\ge0\end{cases}\Leftrightarrow9\le x\le10}\)

Vậy minA = 1 \(\Leftrightarrow9\le x\le10\)

7 tháng 3 2021

\(B=\left|x-1945\right|+\)\(\left|x-1954\right|\)

Ta có:

\(\left|x-1945\right|\ge x-1945\forall x\)

\(\left|x-1954\right|\ge1954-x\forall x\)

\(\Leftrightarrow\left|x-1945\right|+\left|x-1954\right|\ge x-1945+1954-x\)

\(\Leftrightarrow B\ge9\)

Dấu bằng xảy ra

\(\Leftrightarrow\orbr{\begin{cases}x-1945\ge0\\1954-x\ge0\end{cases}\Leftrightarrow1945\le x\le1954}\)

Vậy minB = 9 \(\Leftrightarrow1945\le x\le1954\)

23 tháng 4 2022

\(a.A=\left(x-2\right)^2+\left(y+1\right)^2+1\ge1\forall x;y\) . " = " \(\Leftrightarrow x=2;y=-1\) 

b.\(B=7-\left(x+3\right)^2\le7\forall x\)  " = " \(\Leftrightarrow x=-3\)

c.\(C=\left|2x-3\right|-13\ge-13\forall x\)  " = " \(\Leftrightarrow x=\dfrac{3}{2}\)

d.\(D=11-\left|2x-13\right|\le11\forall x\)  " = " \(\Leftrightarrow x=\dfrac{13}{2}\)

23 tháng 4 2022

:o

26 tháng 12 2021

C

10 tháng 10 2020

\(A=\left|x-2\right|+\left|x-9\right|+\left|1945-x\right|\)

\(x\ge9\)

\(A=\left|1945-x-11\right|\)

\(A=\left|1945-11-11\right|\left(min/x=11\right)\)

\(A=\left|1945\right|\)

GTNN = \(\left|1945\right|\)(:

28 tháng 10 2023

a: \(\left(x-2\right)^2>=0\)

\(\left|y-x\right|>=0\)

Do đó: \(\left(x-2\right)^2+\left|y-x\right|>=0\forall x,y\)

=>\(\left(x-2\right)^2+\left|y-x\right|+3>=3\forall x,y\)

=>A>=3 với mọi x,y

Dấu = xảy ra khi x-2=0 và y-x=0

=>x=2=y

b: \(\left|x+5\right|>=0\)

=>\(\left|x+5\right|+5>=5\)

=>B>=5 với mọi x

Dấu = xảy ra khi x+5=0

=>x=-5

c: \(\left|x-2010\right|>=0\)

=>\(-\left|x-2010\right|< =0\)

=>\(-\left|x-2010\right|+2012< =2012\)

=>\(C=\dfrac{2011}{2012-\left|x-2010\right|}>=\dfrac{2011}{2012}\forall x\)

Dấu = xảy ra khi x=2010

28 tháng 10 2023

a) Ta có:

\(A=\left(x-2\right)^2+\left|y-x\right|+3\)

Mà: \(\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\\\left|y-x\right|\ge0\end{matrix}\right.\)

\(\Rightarrow A=\left(x-2\right)^2+\left|y-x\right|+3\ge3\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}x-2=0\\y-x=0\end{matrix}\right.\)

\(\Rightarrow x=y=2\)

Vậy: \(A_{min}=3\Leftrightarrow x=y=2\) 

b) Ta có:

\(B=\left|x+5\right|+5\)

Mà: \(\left|x+5\right|\ge0\)

\(\Rightarrow B=\left|x+5\right|+5\ge5\)

Dấu "=" xảy ra:

\(x+5=0\Rightarrow x=-5\)

Vậy: \(B_{min}=5\Leftrightarrow x=-5\)

c) Ta có:

\(C=\dfrac{2011}{2012-\left|x-2010\right|}\)

Mà: \(\left|x-2010\right|\ge0\)

\(\Rightarrow C=\dfrac{2011}{2012-\left|x-2010\right|}\ge\dfrac{2011}{2012}\)

Dấu "=" xảy ra khi:

\(x-2010=0\Rightarrow x=2010\)

Vậy: \(C_{min}=\dfrac{2011}{2012}\Leftrightarrow x=2010\)

11 tháng 10 2021

\(A=0,5-\left|x-3,5\right|\le0,5\\ A_{max}=0,5\Leftrightarrow x-3,5=0\Leftrightarrow x=3,5\\ B=-\left|1,4-x\right|2=-2\left|1,4-x\right|\le0\\ B_{min}=0\Leftrightarrow1,4-x=0\Leftrightarrow x=1,4\)

A =|3x-4| + |5x-7| -x +2025

- Nếu x < \(\dfrac{4}{3}\):

\(\Rightarrow\) \(\left\{{}\begin{matrix}3x-4< 0\\5x-7< 0\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}\text{|}3x-4\text{|}=-3+4\\\text{|}5x-7\text{|}=-5x+7\end{matrix}\right.\) 

\(\Rightarrow\) \(A=-3x+4-5x+7-x+2025\) 

Vì x \(< \dfrac{4}{3}\) \(\Rightarrow\) \(9x< 12\) \(\Rightarrow\) \(-9x>-12\) 

\(\Rightarrow\) \(-9x+2036>2024\) 

\(\Rightarrow\) A \(>2024\) ( Loại)

Nếu \(\dfrac{4}{3}\) \(\le\) x \(< \dfrac{7}{5}\) 

\(\Rightarrow\) \(\left\{{}\begin{matrix}3x-4>0\\5x-7< 0\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}\text{|}3x-4\text{|}=3x-4\\\text{|}5x-7\text{|}=-5x+7\end{matrix}\right.\) 

\(\Rightarrow\) A= \(-3x-4-5x+7-x+2025\) 

       =   \(-3x+2028\) 

Ta có: \(\dfrac{4}{3}\) \(\le x\) \(\Rightarrow\) \(-3x\) \(>\dfrac{-21}{5}\) 

\(\Rightarrow\) 2024 \(\ge\) \(-3x+2028>\dfrac{10119}{5}\) ( loại)

Nếu x :

\(\ge\dfrac{7}{5}\\ \Rightarrow\left\{{}\begin{matrix}3x-4>0\\5x-7>0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}\text{|}3x-4\text{|}=3x-4\\\text{|}5x-7\text{|}=5x-7\end{matrix}\right.\\ \Rightarrow A=3x-4+5x-7-x+2025\) 

  \(=7x+2014\) 

Vì \(x\ge\dfrac{7}{5}\) \(\Rightarrow\) \(7x\ge\dfrac{49}{5}\) 

\(\Rightarrow\) \(7x+2014\) \(\ge\dfrac{19}{5}+2014=\dfrac{10119}{5}\) 

\(\Rightarrow\) A \(\ge\) \(\dfrac{10119}{5}\) (  t/m)

Vậy A đạt GTNN khi A bằng \(\dfrac{10119}{5}\)

Dấu "=" xảy ra khi  \(x=\dfrac{7}{5}\)

 

17 tháng 12 2021

a) \(M=2022-\left|x-9\right|\le2022\)

\(maxM=2022\Leftrightarrow x=9\)

b) \(N=\left|x-2021\right|+2022\ge2022\)

\(minN=2022\Leftrightarrow x=2021\)