\(\sqrt{x^2-6x+13}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2015

\(A=\sqrt{x^2-6x+13}=\sqrt{x^2-6x+9+4}=\sqrt{\left(x-3\right)^2+4}\)

Ta thấy rằng (x-3)2 luôn lớn hơn hoặc bằng 0, nhỏ nhất là bằng 0

như vậy biểu thức A nhỏ nhất là  \(A=\sqrt{4}=2\) Khi x-3 = 0 <=> x = 3

 

27 tháng 11 2016

\(\sqrt{x^2}-6x+13=13-5x\)

Nhưng mà......giá trị nhỏ nhất......có tồn tại ko?

27 tháng 11 2016

\(\sqrt{x^2}-6x+13\)

IxI-6x+13=> ko ton tai GTNN

21 tháng 8 2020

a) \(A=\sqrt{4x^2+4x+2}=\sqrt{4x^2+4x+1+1}=\sqrt{\left(2x+1\right)^2+1}\)

Vì \(\left(2x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(2x+1\right)^2+1\ge1\forall x\)

\(\Rightarrow A\ge\sqrt{1}=1\)

Dấu " = " xảy ra \(\Leftrightarrow2x+1=0\)\(\Leftrightarrow2x=-1\)\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy \(minA=1\Leftrightarrow x=\frac{-1}{2}\)

b) \(B=\sqrt{2x^2-4x+5+1}=\sqrt{2x^2-4x+2+3+1}=\sqrt{2\left(x^2-2x+1\right)+4}\)

\(=\sqrt{2\left(x-1\right)^2+4}\)

Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2+4\ge4\forall x\)

\(\Rightarrow B\ge\sqrt{4}=2\)

Dấu " = " xảy ra \(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)

Vậy \(minB=2\Leftrightarrow x=1\)

21 tháng 8 2020

Mơn bạn nha

27 tháng 8 2015

\(\sqrt{x^2+4x+4}+\sqrt{x^2-6x+9}\)

\(=\sqrt{\left(x+2\right)^2}+\sqrt{\left(x-3\right)^2}\)

\(=\left|x+2\right|+\left|x-3\right|\)

\(=\left|x+2\right|+\left|3-x\right|\ge\left|x+2+3-x\right|=5\)

Dấu "=" xảy ra khi:

\(\left(x+2\right)\left(3-x\right)\ge0\)

\(\Leftrightarrow x+2\ge0\text{ và }3-x\ge0\text{ hoặc }x+2\le0\text{ và }3-x\le0\)

\(\Leftrightarrow x\ge-2\text{ và }x\le3\text{ hoặc }x\le-2\text{ và }x\ge3\left(loại\right)\)

Vậy giá trị nhỏ nhất của biểu thức là 5 tại \(-2\le x\le3\)

25 tháng 8 2020

a) Ta có: \(F=\sqrt{x^2-4x+5}=\sqrt{\left(x-2\right)^2+1}\ge\sqrt{1}=1\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x-2\right)^2=0\Rightarrow x=2\)

Vậy Min(F) = 1 khi x=2

b) \(D=\sqrt{2x^2-4x+10}=\sqrt{2\left(x-1\right)^2+8}\ge\sqrt{8}=2\sqrt{2}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy \(Min\left(D\right)=2\sqrt{2}\Leftrightarrow x=1\)

c) \(G=\sqrt{2x^2-6x+5}=\sqrt{2\left(x-\frac{3}{2}\right)^2+\frac{1}{2}}\ge\sqrt{\frac{1}{2}}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x-\frac{3}{2}\right)^2=0\Rightarrow x=\frac{3}{2}\)

Vậy \(Min\left(G\right)=\frac{\sqrt{2}}{2}\Leftrightarrow x=\frac{3}{2}\)

5 tháng 7 2016

\(A=\sqrt{x^2-6x+9+2\left(y^2+2y+1\right)}+\sqrt{x^2+2x+1+3\left(y^2+2y+1\right)}.\)

\(A=\sqrt{\left(x-3\right)^2+2\left(y+1\right)^2}+\sqrt{\left(x+1\right)^2+3\left(y+1\right)^2}\)

Với mọi giá trị được xác định của x; giá trị của biến y không phụ thuộc vào x, ta luôn có:

\(A=\sqrt{\left(x-3\right)^2+2\left(y+1\right)^2}+\sqrt{\left(x+1\right)^2+3\left(y+1\right)^2}\le\sqrt{\left(x-3\right)^2}+\sqrt{\left(x+1\right)^2}\)(1)

Dấu "=" khi y = -1.

(1) \(\Rightarrow A\le\left|x-3\right|+\left|x+1\right|\)(2)

  • \(x< -1\)(2) \(\Rightarrow A\le-\left(x-3\right)-\left(x+1\right)=-2x+2>4\forall x< -1\)
  • \(-1\le x\le3\)(2) \(\Rightarrow A\le-\left(x-3\right)+\left(x+1\right)=4\forall-1\le x\le3\)
  • \(x>3\)(2) \(\Rightarrow A\le\left(x-3\right)+\left(x+1\right)=2x-2>4\forall x>3\)

Vậy GTNN của A = 4 khi -1<= x <= 3 và y = -1.

\(A=1-|1-3x|+|3x-1|^2\)

\(=\left(|3x-1|-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

\(\Rightarrow minA=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)hoặc \(x=\frac{1}{6}\)

22 tháng 5 2016

√(x² + 2x + 5) = √[(x + 1)² + 4] ≥ 2. 
√(2x² + 4x + 3) = √[2(x + 1)² + 1] ≥ 1. 
=> √(x² + 2x + 5) + √(2x² + 4x + 3) ≥ 3. 
___Dấu bằng xảy ra khi và chỉ khi x = - 1. 
Vậy biểu thức đã cho có giá trị nhỏ nhất là 3

ai tích mình mình sẽ tích lại

22 tháng 5 2016

Bằng biến đổi tương đương, ta chứng minh được BĐT : \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)

Biểu diễn : \(A=\sqrt{2}\left(\sqrt{x^2-x+\frac{5}{2}}+\sqrt{x^2-3x+7}\right)\)

\(=\sqrt{2}\left(\sqrt{\left(x-\frac{1}{2}\right)^2+\left(\frac{3}{2}\right)^2}+\sqrt{\left(\frac{3}{2}-x\right)^2+\left(\sqrt{\frac{19}{4}}\right)^2}\right)\ge\sqrt{2}.\sqrt{\left(x-\frac{1}{2}+\frac{3}{2}-x\right)^2+\left(\frac{3}{2}+\frac{\sqrt{19}}{2}\right)^2}=\sqrt{16+3\sqrt{19}}\)=> Min A = \(\sqrt{16+3\sqrt{19}}\)

Dấu "=" bạn tự xét nhé!

4 tháng 9 2019

1.

\(A=\sqrt{3+\sqrt{\left(\sqrt{12}+1\right)^2}}=\sqrt{4+\sqrt{12}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

2.

\(y=\sqrt{16-x^2}\le4\)

Dau '=' xay ra khi \(x=\sqrt{12}\)

3.

\(y=2+\sqrt{2\left(x-1\right)^2+3}\ge2+\sqrt{3}\)

Dau '=' xay ra khi \(x=1\)