Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 9x^2 - 6x +5= 9x^2 - 6x + 1 +4 = (3x+1)^2 +4 lớn hơn hoặc bằng 4 với mọi x Suy ra GTNN của biểu thức trên = 4 khi và chỉ khi x= -1/3. Vậy x=-1/3 thì GTNN của biểu thức là 4
\(A=x^2-6x+10\)
\(A=x^2-6x+3^2-3^2+10\)
\(A=\left(x-3\right)^2+1\ge1\)
Vậy: \(MinA=1\Leftrightarrow\left(x-3\right)^2=0\)
\(\Leftrightarrow x=3\)
1, A = x^2 + 6x + 2018
= x^2 + 2.x.3 + 3^2 - 3^2 + 2018
= (x + 3)^2 -3^2 + 2018
= (x + 3)^2 + 2009
=>. GTNN of A là 2009
Mình cũng không chắc nữa, nếu đúng thì các ý khác bạn tham khảo nhé
\(A=x^2+6x+2018\)
\(A=\left(x^2+6x+9\right)+2009\)
\(A=\left(x+3\right)^2+2009\)
Mà \(\left(x+3\right)^2\ge0\forall x\)
\(\Rightarrow A\ge2009\)
Dấu "=" xảy ra khi : \(x+3=0\Leftrightarrow x=-3\)
Vậy ...
\(B=x^2-5x+20\)
\(B=\left(x^2-5x+\frac{25}{4}\right)+\frac{55}{4}\)
\(B=\left(x-\frac{5}{2}\right)^2+\frac{55}{4}\)
Mà \(\left(x-\frac{5}{2}\right)^2\ge0\forall x\)
\(\Rightarrow B\ge\frac{55}{4}\)
Dấu "=" xảy ra khi : \(x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)
Vậy ...
\(C=x^2+5x+10\)
\(C=\left(x^2+5x+\frac{25}{4}\right)+\frac{15}{4}\)
\(C=\left(x+\frac{5}{2}\right)^2+\frac{15}{4}\)
Mà \(\left(x+\frac{5}{2}\right)^2\ge0\forall x\)
\(\Rightarrow C\ge\frac{15}{4}\)
Dấu "=" xảy ra khi : \(x+\frac{5}{2}=0\Leftrightarrow x=-\frac{5}{2}\)
Vậy ...
\(D=x^2+10x-30\)
\(D=\left(x^2+10x+25\right)-55\)
\(D=\left(x+5\right)^2-55\)
Mà \(\left(x+5\right)^2\ge0\forall x\)
\(\Rightarrow D\ge-55\)
Dấu "=" xảy ra khi : \(x+5=0\Leftrightarrow x=-5\)
Vậy ...
a) Đặt A = x2 + 6x + 25 = x2 + 6x + 9 + 16 = (x + 3)2 + 16 \(\ge16\)
Dấu "=" xảy ra khi x + 3 = 0
\(\Rightarrow x=-3\)
Vậy Min A = 16 khi x = -3
b) Đặt B = x2 - 4x + 10 = x2 - 4x + 4 + 6 = (x - 2)2 + 6 \(\ge6\)
Dấu "=" xảy ra khi x - 2 = 0
\(\Rightarrow\)x = 2
Vậy Min B = 6 khi x = 2
c) Đặt C = x2 + y2 - 2x + 8y - 20
= (x2 - 2x + 1) + (y2 + 8y + 16) - 37
= (x - 1)2 + (y + 4)2 - 37 \(\ge-37\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-1=0\\y+4=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-4\end{cases}}\)
Vậy Min C = -37 khi x = 1 ; y = - 4
\(M=x^2+2x+2=\left(x^2+x+x+1\right)+1\)
\(M=x\left(x+1\right)+1\left(x+1\right)+1=\left(x+1\right)\left(x+1\right)+1\)
\(M=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\) với mọi x
=>\(\left(x+1\right)^2+1\ge1\) với mọi x
=>GTNN của M là 1
Dấu "=" xảy ra <=> x+1=0<=>x=-1
GTNN là 19 chắc chắn 100% . nhé!