Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,a,A=x^2-6x+25\)
\(=x^2-2.x.3+9-9+25\)
\(=\left(x-3\right)^2+16\)
Ta có :
\(\left(x-3\right)^2\ge0\)Với mọi x
\(\Rightarrow\left(x-3\right)^2+16\ge16\)
Hay \(A\ge16\)
\(\Rightarrow A_{min}=16\)
\(\Leftrightarrow x=3\)
a)\(A=4x^2+4x+11\)
\(=4x^2+4x+1+10\)
\(=\left(2x+1\right)^2+10\ge10\)
Dấu = khi \(x=\frac{-1}{2}\)
Vậy MinA=10 khi \(x=\frac{-1}{2}\)
b)\(B=3x^2-6x+1\)
\(=3x^2-6x+3-2\)
\(=3\left(x^2-2x+1\right)-2\)
\(=3\left(x-1\right)^2-2\ge-2\)
Dấu = khi \(x=1\)
Vậy MinB=-2 khi \(x=1\)
c)\(C=x^2-2x+y^2-4y+6\)
\(=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\)
Dấu = khi \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Vậy MinC=1 khi \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
a) 4x2 + 4x + 11 = (2x + 1)2 + 10 > 10 \(\Rightarrow\) giá trị nhỏ nhất là 10
b) 3x2 - 6x - 1
\(=\frac{3\cdot\left(3x^2-6x-1\right)}{3}\)
\(=\frac{9x^2-18x-3}{3}\)
\(=\frac{\left(3x-3\right)^2-12}{3}\)
\(=\frac{\left[3\left(x-1\right)\right]^2-12}{3}\)
\(=\frac{9\left(x-1\right)^2-12}{3}\)
\(=\frac{3\left[3\left(x-1\right)^2-4\right]}{3}\)
= 3(x - 1)2 - 4 > - 4
\(\Rightarrow\) giá trị nhỏ nhất là - 4
b/ \(3-100x+8x^2=8x^2+x-300\)
\(\Leftrightarrow-101x=-303\)
\(\Rightarrow x=3\)
c/ \(5\left(5x+2\right)-10\left(8x-1\right)=6\left(4x+2\right)-150\)
\(\Leftrightarrow25x+10-80x+10=24x+12-150\)
\(\Leftrightarrow-79x=-158\)
\(\Rightarrow x=2\)
d/ \(3\left(3x+2\right)-\left(3x+1\right)=12x+10\)
\(\Leftrightarrow9x+6-3x-1=12x+10\)
\(\Leftrightarrow-6x=5\)
\(\Rightarrow x=-\frac{5}{6}\)
e/ \(30x-6\left(2x-5\right)+5\left(x+8\right)=210+10\left(x-1\right)\)
\(\Leftrightarrow30x-12x+30+5x+40=210+10x-10\)
\(\Leftrightarrow13x=130\)
\(\Rightarrow x=10\)
\(A=x^2-4x+1=\left(x-2\right)^2-3\ge-3\)
\(\Rightarrow A_{min}=-3\) khi \(x=2\)
\(B=4x^2+4x+11=\left(2x+1\right)^2+10\ge10\)
\(\Rightarrow B_{min}=10\) khi \(x=-\frac{1}{2}\)
\(C=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-36\ge-36\)
\(\Rightarrow C_{min}=-36\) khi \(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
\(D=-x^2-8x-16+21=21-\left(x+4\right)^2\le21\)
\(\Rightarrow C_{max}=21\) khi \(x=-4\)
\(E=-x^2+4x-4+5=5-\left(x-2\right)^2\le5\)
\(\Rightarrow E_{max}=5\) khi \(x=2\)
1. D = 3( x2 - 2x.1/3 + 1/9) -1/3 +1
GTNN D = 5/6
dài quá, nản quá
a) \(A=x^2+x+1\)
\(A=x^2+x+\frac{1}{4}+\frac{3}{4}\)
\(A=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Có: \(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu = xảy ra khi: \(\left(x+\frac{1}{2}\right)^2=0\Rightarrow x+\frac{1}{2}=0\Rightarrow x=-\frac{1}{2}\)
Vậy: \(Min_A=\frac{3}{4}\) tại \(x=-\frac{1}{2}\)
b) \(B=2+x-x^2\)
\(B=\frac{9}{4}-x^2+x-\frac{1}{4}\)
\(B=\frac{9}{4}-\left(x-\frac{1}{2}\right)^2\)
Có: \(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\frac{9}{4}-\left(x-\frac{1}{2}\right)^2\le\frac{9}{4}\)
Dấu = xảy ra khi: \(\left(x-\frac{1}{2}\right)^2=0\Rightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)
Vậy: \(Max_B=\frac{9}{4}\) tại \(x=\frac{1}{2}\)
c) \(C=x^2-4x+1\)
\(C=x^2-4x+4-3\)
\(C=\left(x-2\right)^2-3\)
Có: \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2-3\ge-3\)
Dấu = xảy ra khi: \(\left(x-2\right)^2=0\Rightarrow x-2=0\Rightarrow x=2\)
Vậy: \(Min_C=-3\) tại \(x=2\)
Mấy bài kia tương tự, riêng bài g
g) \(G=h\left(h+1\right)\left(h+2\right)\left(h+3\right)\)
\(G=\left(h^2+3h\right)\left(h^2+3h+2\right)\)
Đặt: \(t=h^2+3h+1\)
\(\Leftrightarrow\hept{\begin{cases}h^2+3h=t-1\\h^2+3h+2=t+1\end{cases}}\)
\(\Leftrightarrow\left(h^2+3h\right)\left(h^2+3h+2\right)=\left(t-1\right)\left(t+1\right)=t^2-1=\left(h^2+3h+1\right)^2-1\)
Có: \(\left(h^2+3h+1\right)^2\ge0\Rightarrow\left(h^2+3h+1\right)^2-1\ge-1\)
Dấu = xảy ra khi: \(\left(h^2+3h+1\right)^2=0\Rightarrow h^2+3h+1=0\Rightarrow\left(h+\frac{3}{2}\right)^2-\frac{5}{4}=0\Rightarrow\orbr{\begin{cases}h=-\frac{\sqrt{5}}{2}-\frac{3}{2}\\h=\frac{\sqrt{5}}{2}-\frac{3}{2}\end{cases}}\)
Vậy: \(Min_G=-1\) tại \(\orbr{\begin{cases}h=-\frac{\sqrt{5}}{2}-\frac{3}{2}\\h=\frac{\sqrt{5}}{2}-\frac{3}{2}\end{cases}}\)
a) \(A=2x^2+2x+3\)
\(A=2\left(x^2+x+\frac{3}{2}\right)\)
\(A=2\left[x^2+2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{5}{4}\right]\)
\(A=2\left[\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\right]\)
\(A=2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x+\frac{1}{2}=0\Leftrightarrow x=\frac{-1}{2}\)
b) Biến đổi mẫu thức :
\(3x^2+4x+15\)
\(=3\left(x^2+\frac{4}{3}x+5\right)\)
\(=3\left[x^2+2\cdot x\cdot\frac{2}{3}+\left(\frac{2}{3}\right)^2+\frac{41}{9}\right]\)
\(=3\left[\left(x+\frac{2}{3}\right)^2+\frac{41}{9}\right]\)
\(=3\left(x+\frac{2}{3}\right)^2+\frac{41}{3}\)
\(B=\frac{5}{3\left(x+\frac{2}{3}\right)^2+\frac{41}{3}}\ge\frac{5}{\frac{41}{3}}=\frac{15}{41}\)
Dấu "=" xảy ra \(\Leftrightarrow x+\frac{2}{3}=0\Leftrightarrow x=\frac{-2}{3}\)
c) \(C=-x^2+2x-2\)
\(C=-\left(x^2-2x+2\right)\)
\(C=-\left(x^2-2\cdot x\cdot1+1^2+1\right)\)
\(C=-\left[\left(x-1\right)^2+1\right]\)
\(C=-1-\left(x-1\right)^2\le-1\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
d) Biến đổi mẫu thức tương tự câu b)
\(P=\frac{xy}{\left|xy\right|}+\frac{x-y}{\left|x-y\right|}\cdot\left(\frac{x}{\left|x\right|}-\frac{y}{\left|y\right|}\right)\)
TH1: \(x,y>0\)
+) Xét \(x>y\): \(P=\frac{xy}{xy}+\frac{x-y}{x-y}\cdot\left(\frac{x}{x}-\frac{y}{y}\right)=1+1\cdot\left(1-1\right)=1\)
+) Xét \(x< y\): \(P=\frac{xy}{xy}+\frac{x-y}{y-x}\cdot\left(\frac{x}{x}-\frac{y}{y}\right)=1+\left(-1\right)\cdot\left(1-1\right)=1\)
TH2: \(x,y< 0\)
+) Xét \(x>y\): \(P=\frac{xy}{xy}+\frac{x-y}{x-y}\cdot\left(\frac{x}{-x}-\frac{y}{-y}\right)=1+1\cdot\left[-1-\left(-1\right)\right]=1\)
+) Xét \(x< y\): \(P=\frac{xy}{xy}+\frac{x-y}{y-x}\cdot\left(\frac{x}{-x}-\frac{y}{-y}\right)=1\)
TH3: \(x>0;y< 0\): \(P=\frac{xy}{-xy}+\frac{x-y}{x-y}\cdot\left(\frac{x}{x}-\frac{y}{-y}\right)=-1+1\cdot\left(1+1\right)=1\)
TH4: \(x< 0;y>0\): \(P=\frac{xy}{-xy}+\frac{x-y}{y-x}\cdot\left(\frac{x}{-x}-\frac{y}{y}\right)=-1+\left(-1\right)\cdot\left(-1-1\right)=1\)
Nói chung với mọi x, y thì P = 1
a)A = \(x^2-4x+1\)
\(A=x^2-4x+4-3=\left(x-2\right)^2-3\)
Do : \(\left(x-2\right)^2\) ≥ 0 ∀x
⇒ \(\left(x-2\right)^2\)- 3 ≥ - 3
⇒ AMin = - 3 ⇔ x = 2
b) \(B=4x^2+4x+11=4x^2+4x+1+10=\left(2x+1\right)^2+10\)
Do : \(\left(2x+1\right)^2\) ≥ 0 ∀x
⇒ \(\left(2x+1\right)^2\)+ 10 ≥ 10
⇒ BMin = 10 ⇔ x = \(-\dfrac{1}{2}\)
c) \(C=3x^2-6x-1=3x^2-6x+3-4=3\left(x-1\right)^2-4\)
Do : \(3\left(x-1\right)^2\) ≥ 0 ∀x
⇒ \(3\left(x-1\right)^2\) - 4 ≥ - 4
⇒ CMin = - 4 ⇔ x = 1