Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
|3x-2y| ≥ 0
|2z-5y| ≥ 0
|xy+yz+zx-174| ≥ 0
=> |3x-2y|+|2z-5y|+|xy+yz+zx-174| ≥ 0
=> p ≥ 2017
vậy GTNN của p là 2017
Không làm mất tính tổng quát, giả sử \(0< x\le y\le z\)
=> \(x+y+z\le3z\Leftrightarrow xyz\le3z\Leftrightarrow xy\le3\)
Mà x;y;z là các số nguyên dương => \(xy\in\left\{1;2;3\right\}\)
Ta xét các trường hợp:
TH1: \(xy=1\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\Leftrightarrow2+z=z\Leftrightarrow2=0\) (vô lý!)
TH2: \(xy=2\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\Leftrightarrow z=3\) (thỏa mãn)
TH3: \(xy=3\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\Leftrightarrow z=2\) (thỏa mãn)
Vậy (x;y;z) là các hoán vị của (1;2;3)
+) Vì y và x tỉ lệ thuận với nhau nên:
y=kxy=kx
\Rightarrow y_1=k\cdot x_1⇒y1=k⋅x1
hay 6=k\cdot36=k⋅3
\Rightarrow k=2⇒k=2
Vậy y tỉ lệ thuận với x theo hệ số tỉ lệ 2.
Bổ sung đk $x,y$ là số nguyên
Lời giải:
$8x+5y=46$
$8(x+y)=46+3y$
Để $x+y$ nguyên dương min thì $46+3y$ nguyên dương min chia hết cho $8$
+ Nếu $46+3y=8\Rightarrow y=\frac{-38}{3}$ (loại)
+ Nếu $46+3y=16\Rightarrow y=-10$ (tm)
Vậy $8(x+y)_{\min}=16$
$\Rightarrow (x+y)_{\min}=2$ khi $(x,y)=(12,-10)$