Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=\left|x-2018\right|+\left|2019-x\right|+\left|x-2020\right|\)
\(A=\left(\left|x-2018\right|+\left|2020-x\right|\right)+\left|2019-x\right|\)
\(\Rightarrow A\ge\left|x-2018+2020-x\right|+\left|2019-x\right|=2+\left|2019-x\right|\)
Dấu "=" xảy ra <=> \(\left(x-2018\right)\left(2020-x\right)\ge0\)
\(\Rightarrow\left(x-2018\right)\left(x-2020\right)\le0\)
\(\Rightarrow\hept{\begin{cases}x-2018\ge0\\x-2020\le0\end{cases}\Rightarrow\hept{\begin{cases}x\ge2018\\x\le2020\end{cases}\Rightarrow}2018\le x\le2020}\)
Và \(\left|2019-x\right|\ge0\), Min (A) = 2 <=> |2019-x| = 0 <=> x= 2019
\(A=\left|2018-x\right|+\left|2019-x\right|+\left|2020-x\right|\)
\(=\left|2018-x\right|+\left|2019-x\right|+\left|x-2020\right|\)
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) :
\(A\ge\left|2018-x+x-2020\right|+\left|2019-x\right|=2+\left|2019-x\right|\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow\left(2018-x\right)\left(x-2020\right)\ge0;2019-x=0\Leftrightarrow x=2019\left(tm\right)\)
Vậy GTNN của A là 2 tại x=2019
\(A=\left(|2018-x|+|2020-x\right)+|2019-x|\)
Đặt \(B=|2018-x|+|2020-x|\)
\(=|2018-x|+|x-2020|\ge|2018-x+x-2020|\)
Hay \(B\ge2\left(1\right)\)
Dấu "=" xảy ra\(\Leftrightarrow\left(2018-x\right)\left(x-2020\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}2018-x\ge0\\x-2020\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}2018-x< 0\\x-2020< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\le2018\\x\ge2020\end{cases}\left(loai\right)}\)hoặc \(\hept{\begin{cases}x>2018\\x< 2020\end{cases}}\)
\(\Leftrightarrow2018< x< 2020\)
Đặt \(C=|2019-x|\)
Vì \(|2019-x|\ge0;\forall x\)
Hay \(C\ge0;\forall x\left(2\right)\)
Dấu "=" xảy ra\(\Leftrightarrow2019-x=0\)
\(\Leftrightarrow x=2019\)
Từ (1) và (2) \(\Rightarrow B+C\ge2+0\)
Hay \(A\ge2\)
Dấu "=" xảy ra\(\Leftrightarrow\hept{\begin{cases}2018< x< 2020\\x=2019\end{cases}\Leftrightarrow}x=2019\)
Vậy MIN A=2 \(\Leftrightarrow x=2019\)
\(F=\left|2018-x\right|+\left|2019-x\right|\)
\(=\left|2018-x\right|+\left|x-2019\right|\)
Ta có :
\(\left|2018-x\right|+\left|x-2019\right|\ge\left|2018-x+x-2019\right|\)
=> \(F\ge\left|-1\right|\)
=> \(F\ge1\)
Dấu = xảy ra khi : ( 2018 - x ) ( x - 2019 ) > 0
TH1 : \(\hept{\begin{cases}2018-x>0\\x-2019>0\end{cases}}\)
=> \(\hept{\begin{cases}x< 2018\\x>2019\end{cases}}\)
=> 2019 < x < 2018 ( vô lí - loại )
TH2 : \(\hept{\begin{cases}2018-x< 0\\x-2019< 0\end{cases}}\)
=> \(\hept{\begin{cases}x>2018\\x< 2019\end{cases}}\)
=> 2018 < x < 2019
Vậy giá trị nhỏ nhất của F là 1 khi x thỏa mãn 2018 < x < 2019
Tham khảo nha nhóc
https://olm.vn/hoi-dap/detail/223396249611.html
Tương tự à
Áp dụng BĐT \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)
\(\Rightarrow A=\left|x+2018\right|+\left|2019-x\right|\ge\left|\left(x+2018\right)+\left(2019-x\right)\right|=4037\)
\(\Rightarrow A_{min}=4037\)(Dấu "="\(\Leftrightarrow x\le2019\))
b, tìm x,y biết |x-2018|+|y+2019|=0
\(\Rightarrow\hept{\begin{cases}|x-2018|=0\\|y+2019|=0\end{cases}}\Rightarrow\hept{\begin{cases}x-2018=0\\y+2019=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2018\\y=-2019\end{cases}}\)
vậy x=2018 ; y=-2019
a)
ta có \(\hept{\begin{cases}\left|x\right|\ge0\\\left|y+1\right|\ge0\end{cases}}\Rightarrow\left|x\right|+\left|y+1\right|\ge0\Rightarrow A_{min}=0\Leftrightarrow\hept{\begin{cases}x=0\\y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}\)
b)
ta có \(\hept{\begin{cases}\left|x-2018\right|\ge0\\\left|y+2019\right|\ge0\end{cases}}\)
mà \(\left|x-2018\right|+\left|y+2019\right|=0\Rightarrow\hept{\begin{cases}x-2018=0\\y+2019=0\end{cases}\Rightarrow\hept{\begin{cases}x=2018\\y=-2019\end{cases}}}\)
Vì \(\left|x-2019\right|\ge0\forall x\)
\(\Rightarrow A\ge2018\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-2019=0\Leftrightarrow x=2019\)
Vậy Amin = 2018 <=> x = 2019
\(C=\dfrac{\left|X-2017\right|+2018}{\left|X-2017\right|+2019}=\dfrac{\left(\left|X-2017\right|+2019\right)-1}{\left|X-2017\right|+2019}=1-\dfrac{1}{\left|X-2017\right|+2019}\)
\(\text{Biểu thức C đạt giá trị nhỏ nhất khi }\left|x-2017\right|+2019\text{ có giá trị nhỏ nhất}\)
\(\text{Mà }\left|x-2017\right|\ge0\text{ nên }\left|x-2017\right|+2019\ge2019\)
\(\text{Dấu "=" xảy ra khi }x=2017\Rightarrow C=\dfrac{2018}{2019}\)
\(\text{Vậy giá trị nhỏ nhất của C là }\dfrac{2018}{2019}\text{ khi }x=2017\)
Bài này mài kiếm đâu ra z mk hềnh như bài này ta lm oy mk