Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
g) G = x2 + 6x + 4y2 - 10y + 5
G = (x2+ 6x + 9) + 4(y2 - 2,5y + 1,5625) - 10,25
G = (x + 3)2 + 4(y - 1,25)2 - 10,25 \(\ge\)-10,25 với mọi x;y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+3=0\\y-1,25=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-3\\y=1,25\end{cases}}\)
Vậy MinG = -10,25 khi x = -3 và y = 1,25
h) H = -2x2 - 6x - 3y2 + 12y - 8
H = -2(x2 + 3x + 2,25) - 3(y2 - 4y + 4)+ 8,5
H = -2(x + 1,5)2 - 3(Y - 2)2 + 8,5 \(\le\)8,5 với mọi x;y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+1,5=0\\y-2=0\end{cases}}\)<=> \(\hept{\begin{cases}x=-1,5\\y=2\end{cases}}\)
vậy MaxH = 8,5 khi x = -1,5 và y = 2
a) \(A=x^2-4x+1=\left(x-2\right)^2-3\ge-3\)
\(minA=-3\Leftrightarrow x=2\)
b) \(B=-x^2-8x+5=-\left(x+4\right)^2+21\le21\)
\(maxB=21\Leftrightarrow x=-4\)
c) \(C=2x^2-8x+19=2\left(x-2\right)^2+11\ge11\)
\(minC=11\Leftrightarrow x=2\)
d) \(D=-3x^2-6x+1=-3\left(x+1\right)^2+4\le4\)
\(maxD=4\Leftrightarrow x=-1\)
a. Ta có : \(A=\frac{8x^2-9}{x^2+3}=\frac{8x^2+24-33}{x^2+3}=8-\frac{33}{x^2+3}\)
Để Amin thì \(\frac{33}{x^2+3}_{max}\) mà \(\frac{33}{x^2+3}\le11\)
Dấu "=" xảy ra \(\Leftrightarrow x^2+3=3\Leftrightarrow x=0\)
Vậy Amin = 8 - 11 = - 3 <=> x = 0
b. Ta có : \(B=\frac{3x^2-6x+40}{x^2-2x+5}=\frac{3\left(x^2-2x+5\right)+25}{x^2-2x+5}=3+\frac{25}{x^2-2x+5}\)
Để Bmax thì \(\frac{25}{x^2-2x+5}=\frac{25}{\left(x-1\right)^2+4}_{max}\)
mà \(\frac{25}{\left(x-1\right)^2+4}\le\frac{25}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2+4=4\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy Bmax \(=3+\frac{25}{4}=\frac{37}{4}\) <=> x = 1
\(K=\frac{-7}{-2x^2+8x-60}\)
\(K=\frac{-7}{-2\left(x^2-4x+4-26\right)}\)
\(K=\frac{7}{2\left(x-2\right)^2-56}\)
Ta có : \(2\left(x-2\right)^2-56\ge-56\)
\(\Rightarrow K_{max}=\frac{-7}{56}\Leftrightarrow x=2\)
\(L=\frac{8}{-3x^2+9x-40}\)
\(L=\frac{8}{-3\left(x^2-3x+\frac{9}{4}+\frac{133}{12}\right)}\)
\(L=\frac{-8}{3\left(x-\frac{3}{2}\right)^2+\frac{133}{4}}\)
Ta có : \(3\left(x-\frac{3}{2}\right)^2+\frac{133}{4}\ge\frac{133}{4}\)
\(\Rightarrow L_{max}=-\frac{8.4}{133}=-\frac{32}{133}\Leftrightarrow x=\frac{3}{2}\)
b) B=x-!x!
B=0 nếu x>=0
B=2x nếu x<0
=> GTLN của B=0 =0 khi x >=0
a) A=!2x+6!+!2x+8!\(\ge\)I(2x+6)+(2x+8)! đảng thúc khi 2x+6 khác dau voi (2x+8)
A>=!(2x+6)-(2x+8)!=!+-2!=2
2x+6 khác dau voi (2x+8) khi -4<=x<-3
\(M=\frac{2x^2+4x+60}{x^2+2x+4}=\frac{2\left(x^2+2x+4\right)+52}{x^2+2x+4}=2+\frac{52}{x^2+2x+4}=2+\frac{52}{\left(x+1\right)^2+3}\)
Để M đạt GTNN => \(\frac{52}{\left(x+1\right)^2+3}\)đạt GTLN
=> \(\left(x+1\right)^2+3\)(*) đạt GTNN
\(\left(x+1\right)^2\ge0\forall x\Rightarrow\left(x+1\right)^2+3\ge3\)
=> Min(*) = 3 <=> x + 1 = 0 => x = -1
=> MinM = \(2+\frac{52}{\left(-1+1\right)^2+3}=2+\frac{52}{3}=\frac{58}{3}\), đạt được khi x = -1
Mình không chắc nha -.-
\(M=\frac{2x^2+4x+60}{x^2+2x+4}=\frac{2\left(x^2+2x+4\right)+52}{x^2+2x+4}=2+\frac{52}{x^2+2x+4}\)
Để M đạt GTLN => \(\frac{52}{x^2+2x+4}\)(**) đạt GTLN
Hay \(x^2+2x+4\)(*) đạt GTNN
Ta có : \(x^2+2x+4=\left(x^2+2x+1\right)+3=\left(x+1\right)^2+3\)
Do \(\left(x+1\right)^2\ge0\forall x\Leftrightarrow\left(x+1\right)^2+3\ge3\forall x\)
Nên GTNN (*) = 3 khi x + 1 = 0 <=> x = -1
Suy ra GTLN (**) = 52/3 khi x = -1
Vậy nên GTLN M = 2 + 52/3 = 58/3 khi x = -1
\(H=-2\left(x^2+3x+\frac{9}{4}\right)-3\left(y^2-4y+4\right)+\frac{17}{2}\)
\(H=-2\left(x+\frac{3}{2}\right)^2-3\left(y-2\right)^2+\frac{17}{2}\le\frac{17}{2}\)
\(H_{max}=\frac{17}{2}\) khi \(\left\{{}\begin{matrix}x=-\frac{3}{2}\\y=2\end{matrix}\right.\)