\(K=\dfrac{-7}{-2x^2+8x-60}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2020

\(K=\frac{-7}{-2x^2+8x-60}\)

\(K=\frac{-7}{-2\left(x^2-4x+4-26\right)}\)

\(K=\frac{7}{2\left(x-2\right)^2-56}\)

Ta có : \(2\left(x-2\right)^2-56\ge-56\)

\(\Rightarrow K_{max}=\frac{-7}{56}\Leftrightarrow x=2\)

19 tháng 8 2020

\(L=\frac{8}{-3x^2+9x-40}\)

\(L=\frac{8}{-3\left(x^2-3x+\frac{9}{4}+\frac{133}{12}\right)}\)

\(L=\frac{-8}{3\left(x-\frac{3}{2}\right)^2+\frac{133}{4}}\)

Ta có : \(3\left(x-\frac{3}{2}\right)^2+\frac{133}{4}\ge\frac{133}{4}\)

\(\Rightarrow L_{max}=-\frac{8.4}{133}=-\frac{32}{133}\Leftrightarrow x=\frac{3}{2}\)

22 tháng 8 2020

a. Ta có : \(A=\frac{8x^2-9}{x^2+3}=\frac{8x^2+24-33}{x^2+3}=8-\frac{33}{x^2+3}\)

Để Amin thì \(\frac{33}{x^2+3}_{max}\) mà \(\frac{33}{x^2+3}\le11\)

Dấu "=" xảy ra \(\Leftrightarrow x^2+3=3\Leftrightarrow x=0\)

Vậy Amin = 8 - 11 = - 3 <=> x = 0

b. Ta có : \(B=\frac{3x^2-6x+40}{x^2-2x+5}=\frac{3\left(x^2-2x+5\right)+25}{x^2-2x+5}=3+\frac{25}{x^2-2x+5}\)

Để Bmax thì \(\frac{25}{x^2-2x+5}=\frac{25}{\left(x-1\right)^2+4}_{max}\)

mà \(\frac{25}{\left(x-1\right)^2+4}\le\frac{25}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2+4=4\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy Bmax \(=3+\frac{25}{4}=\frac{37}{4}\)  <=> x = 1

20 tháng 8 2020

\(M=\frac{2x^2+4x+60}{x^2+2x+4}=\frac{2\left(x^2+2x+4\right)+52}{x^2+2x+4}=2+\frac{52}{x^2+2x+4}=2+\frac{52}{\left(x+1\right)^2+3}\)

Để M đạt GTNN => \(\frac{52}{\left(x+1\right)^2+3}\)đạt GTLN

=> \(\left(x+1\right)^2+3\)(*) đạt GTNN

\(\left(x+1\right)^2\ge0\forall x\Rightarrow\left(x+1\right)^2+3\ge3\)

=> Min(*) = 3 <=> x + 1 = 0 => x = -1

=> MinM = \(2+\frac{52}{\left(-1+1\right)^2+3}=2+\frac{52}{3}=\frac{58}{3}\), đạt được khi x = -1

Mình không chắc nha -.-

20 tháng 8 2020

\(M=\frac{2x^2+4x+60}{x^2+2x+4}=\frac{2\left(x^2+2x+4\right)+52}{x^2+2x+4}=2+\frac{52}{x^2+2x+4}\)

Để M đạt GTLN  => \(\frac{52}{x^2+2x+4}\)(**) đạt GTLN 

Hay \(x^2+2x+4\)(*) đạt GTNN 

Ta có : \(x^2+2x+4=\left(x^2+2x+1\right)+3=\left(x+1\right)^2+3\)

Do \(\left(x+1\right)^2\ge0\forall x\Leftrightarrow\left(x+1\right)^2+3\ge3\forall x\)

Nên GTNN (*) = 3 khi x + 1 = 0 <=> x = -1

Suy ra GTLN (**) = 52/3 khi x = -1

Vậy nên GTLN M = 2 + 52/3 = 58/3 khi x = -1

19 tháng 8 2020

g) G =  x2 + 6x + 4y2 - 10y + 5

G = (x2+ 6x + 9) + 4(y2 - 2,5y + 1,5625) - 10,25

G = (x + 3)2 + 4(y - 1,25)2 - 10,25 \(\ge\)-10,25 với mọi x;y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+3=0\\y-1,25=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-3\\y=1,25\end{cases}}\)
Vậy MinG = -10,25 khi x = -3 và y = 1,25

19 tháng 8 2020

h) H = -2x2 - 6x - 3y2 + 12y - 8

H = -2(x2 + 3x + 2,25) - 3(y2 - 4y + 4)+ 8,5 

H = -2(x + 1,5)2 - 3(Y - 2)2 + 8,5 \(\le\)8,5 với mọi x;y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+1,5=0\\y-2=0\end{cases}}\)<=> \(\hept{\begin{cases}x=-1,5\\y=2\end{cases}}\)

vậy MaxH = 8,5 khi  x = -1,5 và y = 2

Ta có: \(-2x^2+8x-60\)

\(=-2\left(x^2-4x+30\right)\)

\(=-2\left(x^2-4x+4+26\right)\)

\(=-2\left(x-2\right)^2-52\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow-2\left(x-2\right)^2\le0\forall x\)

\(\Rightarrow-2\left(x-2\right)^2-52\le-52\forall x\)

\(\Rightarrow\frac{7}{-2\left(x-2\right)^2-52}\ge\frac{7}{-52}=\frac{-7}{52}\)

\(\Rightarrow\frac{-7}{-2\left(x-2\right)^2-52}\le\frac{7}{52}\)

Dấu '=' xảy ra khi x-2=0

hay x=2

Vậy: Giá trị lớn nhất của biểu thức \(K=\frac{-7}{-2x^2+8x-60}\)\(\frac{7}{52}\) khi x=2

Ta có: \(-3x^2+9x-40\)

\(=-3\left(x^2-3x+\frac{40}{3}\right)\)

\(=-3\left(x^2-2\cdot x\cdot\frac{3}{2}+\frac{9}{4}+\frac{133}{12}\right)\)

\(=-3\left(x-\frac{3}{2}\right)^2-\frac{133}{4}\)

Ta có: \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow-3\left(x-\frac{3}{2}\right)^2\le0\forall x\)

\(\Rightarrow-3\left(x-\frac{3}{2}\right)^2-\frac{133}{4}\le\frac{-133}{4}\forall x\)

\(\Rightarrow\frac{8}{-3\left(x-\frac{3}{2}\right)^2-\frac{133}{4}}\ge\frac{8}{-\frac{133}{4}}=8:\frac{-133}{4}=8\cdot\frac{4}{-133}=\frac{-32}{133}\)

Dấu '=' xảy ra khi \(x-\frac{3}{2}=0\)

hay \(x=\frac{3}{2}\)

Vậy: Giá trị nhỏ nhất của biểu thức \(L=\frac{8}{-3x^2+9x-40}\)\(-\frac{133}{4}\) khi \(x=\frac{3}{2}\)

19 tháng 8 2020

Toàn bộ đều tìm Max :)

D = -x2 + 30x - 10

D = -( x2 - 30x + 225 ) + 215

D = -( x - 15 )2 + 215

-( x - 15 )2 ≤ 0 ∀ x => -( x - 15 )2 + 215 ≤ 215

Đẳng thức xảy ra <=> x - 15 = 0 => x = 15

=> MaxD = 215 <=> x = 15

E = -2x2 + 9x + 30

E = -2( x2 - 9/2x + 81/16 ) + 321/8

E = -2( x - 9/4 )2 + 321/8

-2( x - 9/4 )2 ≤ 0 ∀ x => -2( x - 9/4 )2 + 321/8 ≤ 321/8

Đẳng thức xảy ra <=> x - 9/4 = 0 => x = 9/4

=> MaxE = 321/8 <=> x = 9/4

F = -5x2 - 20x - 4

F = -5( x2 + 4x + 4 ) + 16

F = -5( x + 2 )2 + 16

-5( x + 2 )2 ≤ 0 ∀ x => -5( x + 2 )2 + 16 ≤ 16

Đẳng thức xảy ra <=> x + 2 = 0 => x = -2

=> MaxF = 16 <=> x = -2

19 tháng 8 2020

d) \(D=-x^2+30x-10\)

\(D=-\left(x^2-30x+10\right)\)

\(D=\left(x^2-30x+225-215\right)\)

\(D=-\left(x-15\right)^2+215\le215\)

Max D = 215 \(\Leftrightarrow x=15\)

e) \(E=-2x^2+9x+30\)

\(E=-2\left(x^2-\frac{9}{2}x-15\right)\)

\(E=-2\left(x-\frac{9}{4}\right)^2+\frac{321}{8}\le\frac{321}{8}\)

Max \(E=\frac{321}{8}\Leftrightarrow x=\frac{9}{4}\)

f) \(F=-5x^2-20x-4\)

\(F=-5\left(x^2+4x+\frac{4}{5}\right)\)

\(F=-5\left(x^2+4x+4+\frac{16}{5}\right)\)

\(F=-5\left(x+2\right)^2-16\le-16\)

Max F = -16 \(\Leftrightarrow x=-2\)

NV
21 tháng 8 2020

\(B=\frac{3\left(x^2-2x+5\right)+25}{x^2-2x+5}=3+\frac{25}{\left(x-1\right)^2+4}\)

Do \(\left(x-1\right)^2+4\ge4\Rightarrow\frac{25}{\left(x-1\right)^2+4}\le\frac{25}{4}\)

\(\Rightarrow A\le3+\frac{25}{4}\Rightarrow A\le\frac{37}{4}\)

\(A_{max}=\frac{37}{4}\) khi \(x=1\)

\(A_{min}\) ko tồn tại

NV
20 tháng 8 2020

\(M=\frac{2\left(x^2+2x+4\right)+52}{x^2+2x+4}=2+\frac{52}{\left(x+1\right)^2+3}\)

Do \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+3\ge3\)

\(\Rightarrow\frac{52}{\left(x+1\right)^2+3}\le\frac{52}{3}\)

\(\Rightarrow M\le2+\frac{52}{3}=\frac{58}{3}\)

\(M_{max}=\frac{58}{3}\) khi \(x=-1\)

Ko tồn tại M min