\(|\)x+5/6\(|\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2018

\(A=2-\left|x+\frac{5}{6}\right|\)

ta có :

\(\left|x+\frac{5}{6}\right|\ge0\)

\(\Rightarrow-\left|x+\frac{5}{6}\right|\le0\)

\(\Rightarrow2-\left|x+\frac{5}{6}\right|\le0+2\)

\(\Rightarrow2-\left|x+\frac{5}{6}\right|\le2\)

dấu "=" xảy ra khi \(\left|x+\frac{5}{6}\right|=0\)

\(\Leftrightarrow x+\frac{5}{6}=0\)

\(\Leftrightarrow x=\frac{-5}{6}\)

vậy \(A_{max}=2-\left|\frac{-5}{6}+\frac{5}{6}\right|=2-\left|0\right|=2\) \(\Leftrightarrow x=\frac{-5}{6}\)

28 tháng 8 2018

Vì | x + 5/6 | luôn lớn hơn hoặc bằng 0

=> 2 - | x + 5/6 | luôn bé hơn hoặc bằng 2

Dấu "=" xảy ra <=> x + 5/6 = 0 => x = -5/6

Vậy A\(_{max}\)= 2 <=> x = -5/6

25 tháng 6 2019

câu hỏi hay chắc cần dùng đến IQ😀

26 tháng 6 2019

Ta có: \(2^6< 2^6+2^x+2^{3y}=A^2< 10000\)

=> \(8^2< 2^6+2^x+2^{3y}=A^2< 100^2\)

Vì A thuộc N.

Xét trường hợp: \(2^6+2^x+2^{3y}=9^2\)

=> \(2^x+2^{3y}=17\)là số lẻ

Do x, y thuộc N nên xảy  ra hai trường hợp hoặc là x=0, hoặc là y=0

+) Với x=0

ta có: \(1+2^{3y}=17\Leftrightarrow2^{3y}=16=2^4\Leftrightarrow3y=4\Leftrightarrow y=\frac{4}{3}\)( loại vì y là số tự nhiên)

+) Với y=0

ta có: \(2^x+1=17\Leftrightarrow2^x=16=2^4\Leftrightarrow x=4\)(tm)

Khi đó x+y=4

Mà đề bài bảo tìm giá trị nhỏ nhất của x+y, x, y thuộc N

Xét các trường hợp : 

+) y=0, x<4 loại

+) y=1, x<3 loại

+) y=2, x=0 => \(2^6+2^0+2^6=129\)( loại vì ko p là số chính phương)

 +) y=2, x=1 => \(2^6+2+2^6=130\)(loại)

 +) y=3, x=0 => \(2^6+2^0+2^9=577\) ( loại)

Vậy giá trị nhỏ nhất cần tìm là x+y=4

12 tháng 2 2019

a đây là điều hiển nhiên

b (x-8)2>=0 nên (x-8)-2018>=-2018

dấu "=" xảy ra khi x=8

c/(x+5)>=0 nên -(x+5)2 <=0

nên -(x+5)2 +9<=9

dấu "=" xảy ra khi x=-5

Bài tập 3. Với giá trị nào của số tự nhiên a thì     \(\frac{5\cdot a-17}{4\cdot a-23}\)có giá trị lớn nhất.Bài tập 4. Tìm số tự nhiên n để phân số B = \(\frac{10\cdot n-3}{4\cdot n-10}\) đạt giá trị lớn nhất. Tìmgiá trị lớn nhất đó.Bài tập 5. Tìm số tự nhiên n để phân số \(\frac{7\cdot n-8}{2\cdot n-3}\) có giá trị lớn nhất.Bài tập 6. Tìm x để phân số \(\frac{1}{x^2+1}\) có giá trị lớn...
Đọc tiếp

Bài tập 3. Với giá trị nào của số tự nhiên a thì     \(\frac{5\cdot a-17}{4\cdot a-23}\)có giá trị lớn nhất.

Bài tập 4. Tìm số tự nhiên n để phân số B = \(\frac{10\cdot n-3}{4\cdot n-10}\) đạt giá trị lớn nhất. Tìm

giá trị lớn nhất đó.
Bài tập 5. Tìm số tự nhiên n để phân số \(\frac{7\cdot n-8}{2\cdot n-3}\) có giá trị lớn nhất.
Bài tập 6. Tìm x để phân số \(\frac{1}{x^2+1}\) có giá trị lớn nhất.
Bài tập 7. Tìm giá trị nhỏ nhất của của biểu thức sau: A= \(\frac{6\cdot n-1}{3\cdot n-2}\) (với n là số nguyên )

Bài tập 8: cho phân số A= \(\frac{n+1}{n-3}\) . Tìm n để có giá trị lớn nhất.
Bài tập 9: ho phân số: p= \(\frac{6\cdot n+5}{3\cdot n+2}\) (n \(\in\)  N Với giá trị nào của n thì phân số p
có giá trị lớn nhất? tìm giá trị lớn nhất đó.

0
9 tháng 3 2020

Ta có \(|x-5|\ge0;\forall x\Rightarrow|x-5|+25\ge25;\forall x\Rightarrow A\ge25,\forall x\)

GTNN của A là 25 khi và chỉ khi x=5

\(\left(x-2\right)^2\ge0;\forall x\Rightarrow\left(x-2\right)^2-16\ge-16;\forall x\Rightarrow B\ge-16,\forall x\)

GTNN của B là -16 khi x=2

b) \(|x+3|\ge0;\forall x\Rightarrow-|x+3|-5\le-5;\forall x\Rightarrow C\le-5,\forall x\)

GTLN của C là -5 khi và chỉ khi x=-3

\(\left(x+1\right)^2\ge0;\forall x\Rightarrow-\left(x+1\right)^2\le0;\forall x\Rightarrow D\le14,\forall x\)

GTLN của D là 14 khi và chỉ khi x = -1

9 tháng 3 2020

a, Tìm giá trị nhỏ nhất của biểu thức:

A = \(|x-5|+25\)

Để A nhỏ nhất \(\Rightarrow\)\(|x-5|+25\)nhỏ nhất 

\(\Rightarrow\)\(|x-5|\)nhỏ nhất 

Mà  \(|x-5|\)\(\ge0\forall x\inℤ\)

\(\Rightarrow\) \(|x-5|\)\(=0\)                                (1)

Thay (1) vào A, ta có:

A = 0 + 25

A = 25

Vậy giá trị nhỏ nhất của A là 25

\(B=-16+\left(x-2\right)^2\)

Để B nhỏ nhất \(\Rightarrow\)\(-16+\left(x-2\right)^2\)nhỏ nhất

\(\Rightarrow\left(x-2\right)^2\)nhỏ nhất

Mà \(\left(x-2\right)^2\)\(\ge0\forall x\inℤ\)

\(\Rightarrow\left(x-2\right)^2\)\(=0\)                                   (2)

Thay (2) vào B, ta có :

B =  \(-16+0\)

B = \(-16\)

Vậy giá trị nhỏ nhất của B là -16

30 tháng 6 2018

1/a) Ta có: \(A=x^4+\left(y-2\right)^2-8\ge-8\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)

Vậy GTNN của A = -8 khi x=0, y=2.

b) Ta có: \(B=|x-3|+|x-7|\)

\(=|x-3|+|7-x|\ge|x-3+7-x|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le7\end{cases}}\Rightarrow3\le x\le7\)

Vậy GTNN của B = 4 khi \(3\le x\le7\)

2/ a) Ta có: \(xy+3x-7y=21\Rightarrow xy+3x-7y-21=0\)

\(\Rightarrow x\left(y+3\right)-7\left(y+3\right)=0\Rightarrow\left(x-7\right)\left(y+3\right)=0\)

\(\Rightarrow\hept{\begin{cases}x=7\\y=-3\end{cases}}\)

b) Ta có: \(\frac{x+3}{y+5}=\frac{3}{5}\)và \(x+y=16\)

Áp dụng tính chất bằng nhau của dãy tỉ số, ta có:

\(\frac{x+3}{y+5}=\frac{3}{5}\Rightarrow\frac{x+3}{3}=\frac{y+5}{5}=\frac{x+y+8}{8}=\frac{16+8}{8}=\frac{24}{8}=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x+3}{3}=3\Rightarrow x+3=9\Rightarrow x=6\\\frac{y+5}{5}=3\Rightarrow y+5=15\Rightarrow y=10\end{cases}}\)

Bài 3: đề không rõ.

30 tháng 6 2018

Bài 1:\(a,A=x^4+\left(y-2\right)^2-8\)

Có \(x^4\ge0;\left(y-2\right)^2\ge0\)

\(\Rightarrow A\ge0+0-8=-8\)

Dấu "=" xảy ra khi \(MinA=-8\Leftrightarrow x=0;y=2\)

\(b,B=\left|x-3\right|+\left|x-7\right|\)

\(\Rightarrow B=\left|x-3\right|+\left|7-x\right|\)

\(\Rightarrow B\ge\left|x-3+7-x\right|\)

\(\Rightarrow B\ge\left|-10\right|=10\)

Dấu "=" xảy ra khi \(MinB=10\Leftrightarrow3\le x\le7\Rightarrow x\in\left(3;4;5;6;7\right)\)

27 tháng 9 2016

11

27 tháng 9 2016

2^8Xx-415=7^4

256Xx-415=2401

256Xx       =2401+415

256Xx       =2816

        x        =2816:256

        x        = 11