\(^{a^2}\)\(\ge\)0;-
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2019

a đây là điều hiển nhiên

b (x-8)2>=0 nên (x-8)-2018>=-2018

dấu "=" xảy ra khi x=8

c/(x+5)>=0 nên -(x+5)2 <=0

nên -(x+5)2 +9<=9

dấu "=" xảy ra khi x=-5

24 tháng 1 2020

a) a^2>0. Nếu a^2= (-).(-);  (+).(+) thì ta có

th1: (+) . (+) = (+) Chọn (+)2 a^2>0

th2: (-). (-) = (+) Chọn (-)2 a^2>0

Vậy...

25 tháng 1 2020

làm bổ sung cho câu b) là : muốn A có giá trị nhỏ nhất thì (x-8)2 phải có giá trị nhỏ nhất mà giá trị nhỏ nhất của (x-8)là 0

=) A có giá trị nhỏ nhất là -2018

c) : muốn B có giá trị lớn nhất thì -(x+5)2 phải có giá trị lớn nhất mà  -(x+5)có giá trị lớn nhất là \(\infty\)mà không có số nào là số lớn nhất =) B vẫn chỉ có giá trị lớn nhất là \(\infty\)

5 tháng 4 2020

\(a,\) Trường hợp 1: \(\left\{{}\begin{matrix}a>0\Rightarrow\\a^2=a.a=\left(-a\right).\left(-a\right)\end{matrix}\right.\Rightarrow a^2>0\left(1\right)\)

Tường hợp 2: \(a\ge0\Rightarrow a.a>0\Rightarrow a^2\ge0\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Rightarrow a^2\ge0\forall a\in Z\)

\(b,\left(x-11\right)^2+2020\)

Ta có: \(\left(x-11\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-11\right)^2+2020\ge2020\forall x\)

\(\Rightarrow Min=2020\Leftrightarrow x=11\)

\(c,-\left(x+64\right)^2+6789\)

Ta có: \(-\left(x+64\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+64\right)^2+64789\le6789\forall x\)

\(\Rightarrow Max=6789\Leftrightarrow x=-64\)

Vậy ..........

5 tháng 4 2020

"Max" với "Min" có nghĩa là gì vậy?haha

26 tháng 2 2017

a) Có

b) Không

c) \(\frac{1}{3}\)

d) 1

26 tháng 2 2017

Cảm ơn bn Minato Namikaze nha !

9 tháng 3 2020

Ta có \(|x-5|\ge0;\forall x\Rightarrow|x-5|+25\ge25;\forall x\Rightarrow A\ge25,\forall x\)

GTNN của A là 25 khi và chỉ khi x=5

\(\left(x-2\right)^2\ge0;\forall x\Rightarrow\left(x-2\right)^2-16\ge-16;\forall x\Rightarrow B\ge-16,\forall x\)

GTNN của B là -16 khi x=2

b) \(|x+3|\ge0;\forall x\Rightarrow-|x+3|-5\le-5;\forall x\Rightarrow C\le-5,\forall x\)

GTLN của C là -5 khi và chỉ khi x=-3

\(\left(x+1\right)^2\ge0;\forall x\Rightarrow-\left(x+1\right)^2\le0;\forall x\Rightarrow D\le14,\forall x\)

GTLN của D là 14 khi và chỉ khi x = -1

9 tháng 3 2020

a, Tìm giá trị nhỏ nhất của biểu thức:

A = \(|x-5|+25\)

Để A nhỏ nhất \(\Rightarrow\)\(|x-5|+25\)nhỏ nhất 

\(\Rightarrow\)\(|x-5|\)nhỏ nhất 

Mà  \(|x-5|\)\(\ge0\forall x\inℤ\)

\(\Rightarrow\) \(|x-5|\)\(=0\)                                (1)

Thay (1) vào A, ta có:

A = 0 + 25

A = 25

Vậy giá trị nhỏ nhất của A là 25

\(B=-16+\left(x-2\right)^2\)

Để B nhỏ nhất \(\Rightarrow\)\(-16+\left(x-2\right)^2\)nhỏ nhất

\(\Rightarrow\left(x-2\right)^2\)nhỏ nhất

Mà \(\left(x-2\right)^2\)\(\ge0\forall x\inℤ\)

\(\Rightarrow\left(x-2\right)^2\)\(=0\)                                   (2)

Thay (2) vào B, ta có :

B =  \(-16+0\)

B = \(-16\)

Vậy giá trị nhỏ nhất của B là -16

2 tháng 9 2020

ta có số a,b lớn nhất là 9                     ta có số a,b bé nhất là 1                             . = nhân

ta có 2020.9+9/2020.9-9                       ta có 2020.1+1/2020.1-1

=2020.18/2020.0                                  =2020.2/2020.0

=38360 => m lớn nhất =38360                 =4040 => m bé nhất =4040

30 tháng 6 2018

1/a) Ta có: \(A=x^4+\left(y-2\right)^2-8\ge-8\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)

Vậy GTNN của A = -8 khi x=0, y=2.

b) Ta có: \(B=|x-3|+|x-7|\)

\(=|x-3|+|7-x|\ge|x-3+7-x|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le7\end{cases}}\Rightarrow3\le x\le7\)

Vậy GTNN của B = 4 khi \(3\le x\le7\)

2/ a) Ta có: \(xy+3x-7y=21\Rightarrow xy+3x-7y-21=0\)

\(\Rightarrow x\left(y+3\right)-7\left(y+3\right)=0\Rightarrow\left(x-7\right)\left(y+3\right)=0\)

\(\Rightarrow\hept{\begin{cases}x=7\\y=-3\end{cases}}\)

b) Ta có: \(\frac{x+3}{y+5}=\frac{3}{5}\)và \(x+y=16\)

Áp dụng tính chất bằng nhau của dãy tỉ số, ta có:

\(\frac{x+3}{y+5}=\frac{3}{5}\Rightarrow\frac{x+3}{3}=\frac{y+5}{5}=\frac{x+y+8}{8}=\frac{16+8}{8}=\frac{24}{8}=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x+3}{3}=3\Rightarrow x+3=9\Rightarrow x=6\\\frac{y+5}{5}=3\Rightarrow y+5=15\Rightarrow y=10\end{cases}}\)

Bài 3: đề không rõ.

30 tháng 6 2018

Bài 1:\(a,A=x^4+\left(y-2\right)^2-8\)

Có \(x^4\ge0;\left(y-2\right)^2\ge0\)

\(\Rightarrow A\ge0+0-8=-8\)

Dấu "=" xảy ra khi \(MinA=-8\Leftrightarrow x=0;y=2\)

\(b,B=\left|x-3\right|+\left|x-7\right|\)

\(\Rightarrow B=\left|x-3\right|+\left|7-x\right|\)

\(\Rightarrow B\ge\left|x-3+7-x\right|\)

\(\Rightarrow B\ge\left|-10\right|=10\)

Dấu "=" xảy ra khi \(MinB=10\Leftrightarrow3\le x\le7\Rightarrow x\in\left(3;4;5;6;7\right)\)