K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2021

\(m-\frac{m^2}{4}=-\left(\frac{m^2}{4}-m+1-1\right)\)\(=-\left(\frac{m}{2}-1\right)^2+1\)

\(V\text{ì}\left(\frac{m}{2}-1\right)^2\ge0\Rightarrow-\left(\frac{m}{2}-1\right)^2\le0\Rightarrow-\left(\frac{m}{2}-1\right)^2+1\le1\)

Hay \(m-\frac{m^2}{4}\le1\)

Dấu = xảy ra khi và chỉ khi \(\frac{m}{2}-1=0\Leftrightarrow m=2\)

Vậy GTLN của m-m2/4 là 1 <=> m=2

9 tháng 9 2021

`m - m^2/4`

`= -1/4 m^2 + m`

`= - (1/4 m^2 - m)`

`= - [(1/2m)^2 - 2 . 1/2m . 1 +1^2 - 1]`

`= - (1/2m - 1)^2 + 1`

Vì `(1/2m-1)^2` lớn hơn hoặc bằng `0` với mọi `x`

`-> - (1/2 m-1)^2 +1` nhỏ hơn hoặc bằng `1` với mọi `x`

Dấu "`=`" xảy ra khi :

`<=> (1/2 m-1)^2=0`

`<=> 1/2 m-1=0`

`<=>m=2`

Vậy GTN của BT là `1 <=>m=2`

4 tháng 3 2022

\(M=\dfrac{4a}{a^2+4}=\dfrac{\left(a^2+4\right)-\left(a^2-4a+4\right)}{a^2+4}=1-\dfrac{\left(a-2\right)^2}{a^2+4}\)

-Vì \(\left(a-2\right)^2\ge0;a^2+4>0\) nên \(\dfrac{\left(a-2\right)^2}{a^2+4}\ge0\)

\(\Rightarrow M=1-\dfrac{\left(a-2\right)^2}{a^2+4}\le1\)

\(M_{max}=1\Leftrightarrow\dfrac{\left(a-2\right)^2}{a^2+4}=0\Leftrightarrow\left(a-2\right)^2=0\Leftrightarrow a-2=0\Leftrightarrow a=2\).

23 tháng 8 2020

\(A=5-8x+x^2=-8x+x^2+6-11\)

\(=\left(x-4\right)^2-11\)

Vì \(\left(x-4\right)^2\ge0\forall x\)\(\Rightarrow\left(x-4\right)^2-11\ge-11\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-4\right)^2=0\Leftrightarrow x-4=0\Leftrightarrow x=4\)

Vậy Amin = - 11 <=> x = 4

23 tháng 8 2020

\(B=\left(2-x\right)\left(x+4\right)=-x^2-2x+8\)

\(=-\left(x^2+2x+1\right)+9=-\left(x+1\right)^2+9\)

Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow-\left(x+1\right)^2+9\le9\)

Dấu "=" xảy ra \(\Leftrightarrow-\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Vậy Bmax = 9 <=> x = - 1

30 tháng 8 2023

Ta có: 

\(A=\sqrt{4\sqrt{x}-x}\) (ĐK: \(16\ge x\ge0\)

Mà: \(\sqrt{4\sqrt{x}-x}\ge0\forall x\) 

Dấu "=" xảy ra:

\(4\sqrt{x}-x=0\)

\(\Leftrightarrow4\sqrt{x}-\left(\sqrt{x}\right)^2=0\)

\(\Leftrightarrow\sqrt{x}\left(4-\sqrt{x}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\4-\sqrt{x}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=16\end{matrix}\right.\)

Vậy: \(A_{min}=0\) khi \(\left[{}\begin{matrix}x=0\\x=16\end{matrix}\right.\)

30 tháng 8 2023

A không tính max đc nhé

1 tháng 12 2018

a, ĐK: \(\hept{\begin{cases}x+2\ne0\\x\ne0\end{cases}\Rightarrow}\hept{\begin{cases}x\ne-2\\x\ne0\end{cases}}\)

b, \(B=\left(1-\frac{x^2}{x+2}\right).\frac{x^2+4x+4}{x}-\frac{x^2+6x+4}{x}\)

\(=\frac{-x^2+x+2}{x+2}.\frac{\left(x+2\right)^2}{x}-\frac{x^2+6x+4}{x}\)

\(=\frac{\left(-x^2+x+2\right)\left(x+2\right)-\left(x^2+6x+4\right)}{x}\)

\(=\frac{-x^3-2x^2+x^2+2x+2x+4-\left(x^2+6x+4\right)}{x}\)

\(=\frac{-x^3-2x^2-2x}{x}=-x^2-2x-2\)

c, x = -3 thỏa mãn ĐKXĐ của B nên với x = -3 thì 

\(B=-\left(-3\right)^2-2.\left(-3\right)-2=-9+6-2=-5\)

d, \(B=-x^2-2x-2=-\left(x^2+2x+1\right)-1=-\left(x+1\right)^2-1\le-1\forall x\)

Dấu "=" xảy ra khi \(x+1=0\Rightarrow x=-1\)

Vậy GTLN của B là - 1 khi x = -1

2 tháng 12 2018

Thanks bạn ;)

NV
16 tháng 4 2022

\(\left\{{}\begin{matrix}a^2\ge0\\a^4+a^2+1>0\end{matrix}\right.\) ;\(\forall a\Rightarrow P=\dfrac{a^2}{a^4+a^2+1}\ge0\)

\(P_{min}=0\) khi \(a=0\)

\(P=\dfrac{3a^2}{3\left(a^4+a^2+1\right)}=\dfrac{a^4+a^2+1-\left(a^4-2a^2+1\right)}{3\left(a^4+a^2+1\right)}=\dfrac{1}{3}-\dfrac{\left(a^2-1\right)^2}{3\left(a^4+a^2+1\right)}\le\dfrac{1}{3}\)

\(P_{max}=\dfrac{1}{3}\) khi \(a^2=1\Rightarrow a=\pm1\)

16 tháng 4 2022

Ta có  \(3P=\dfrac{3a^2}{a^4+a^2+1}=\dfrac{-a^4+2a^2-1+a^4+a^2+1}{a^4+a^2+1}=1-\dfrac{\left(a^2-1\right)^2}{a^4+a^2+1}\le1\)\(\Rightarrow P\le\dfrac{1}{3}\)

Dấu "=" xảy ra <=> a2 - 1 = 0 <=> a = \(\pm1\)

Vậy Max P = 1/3 khi a = \(\pm1\)

+) Dễ thấy \(P=\dfrac{a^2}{a^4+a^2+1}\ge0\) ("=" khi a = 0) 

Vậy \(0\le P\le\dfrac{1}{3}\)

23 tháng 12 2021

M=a3+b3+3ab(a2+b2)+6a2b2(a+b)

M=a3+b3+3ab(a2+b2)+6a2b2(a+b)

=(a+b)(a2−ab+b2)+3ab[(a+b)2−2ab]+6a2b2(a+b)

=(a+b)(a2−ab+b2)+3ab[(a+b)2−2ab]+6a2b2(a+b)

=(a+b)[(a+b)2−3ab]+3ab[(a+b)2−2ab]+6a2b2(a+b)

=(a+b)[(a+b)2−3ab]+3ab[(a+b)2−2ab]+6a2b2(a+b)

Thay a + b = 1 vào biểu thức trên ,có :

1.(12−3ab)+3ab(12−2ab)+6a2b2.11.(12−3ab)+3ab(12−2ab)+6a2b2.1

=1−3ab+3ab−6a2b2+6a2b2=1=1−3ab+3ab−6a2b2+6a2b2

=1

Vậy biểu thức M có giá trị bằng 1 khi a + b = 1

7 tháng 12 2017

Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của phân thức cực hay, có đáp án | Toán lớp 8

24 tháng 11 2019

Ta có

B   =   4   –   16 x 2   –   8 x     =   5   –   ( 16 x 2   +   8 x   +   1 )   =   5   –   [ ( 4 x ) 2   +   2 . 4 x . 1   +   1 2 ]     =   5   –   ( 4 x   +   1 ) 2

 

Nhận thấy 4 x   +   1 2 ≥ 0; Ɐx

=> 5 – 4 x   +   1 2 ≤ 5

Dấu “=” xảy ra khi 4 x   +   1 2 = 0 ó x = - 1 4

Đáp án cần chọn là: A

21 tháng 10 2017

Ta có \(A=4-x^2+2x\) 

Nên GTLN của A là 4 

Vì GTLN của A là 4 nên \(x^2+2x=0\)

\(\Rightarrow x\left(x+2\right)=0\)

Để biểu thức trên có gia trị = 0 thì

x=0 hoặc x+2=0  Ta có x=0-2=-2

.Vậy A đạt giá trị lớn nhất khi x=0 hoặc x=-2

7 tháng 11 2017

\(A=-x^2+2x+4=-\left(x^2-2x+1\right)+5=-\left(x-1\right)^2+5\le5,\forall x\).
Vậy GTLN của \(A=5\) khi \(-\left(x-1\right)^2=0\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\).