Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
A = \(\sqrt{x}+x\)
\(=\left(\sqrt{x}\right)^2+2.\frac{1}{2}.\sqrt{x}+\frac{1}{4}-\frac{1}{4}=\left(\sqrt{x}+\frac{1}{2}\right)^2-\frac{1}{4}\)
Ta có : \(\sqrt{x}\ge0\)\(\Rightarrow\)\(\left(\sqrt{x}+\frac{1}{2}\right)^2\ge\frac{1}{4}\)
Dấu " = " xảy ra \(\Leftrightarrow\)x = 0
A = \(\left(\sqrt{x}+\frac{1}{2}\right)^2-\frac{1}{4}\ge0\)
Dấu " = " xảy ra \(\Leftrightarrow\)x = 0
Vậy giá trị nhỏ nhất của A = 0 \(\Leftrightarrow\)x = 0
Giải
Ta có :\(A=\sqrt{x}+x\)
\(\Leftrightarrow A=\left(\sqrt{x}\right)^2+2.\frac{1}{2}\sqrt{x}+\frac{1}{4}-\frac{1}{4}\)
\(\Leftrightarrow A=\left(\sqrt{x}+\frac{1}{2}\right)^2-\frac{1}{4}\)
Ta có : \(\sqrt{x}\ge0\Rightarrow\left(\sqrt{x}+\frac{1}{2}\right)^2\ge4\)
\(\Rightarrow A=\left(\sqrt{x}+\frac{1}{2}\right)^2\ge0\)
Dấu " = " xảy ra \(\Leftrightarrow\)x = 0
Vậy giá trị nhỏ nhất của A là 0
a)
\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)
\(\Leftrightarrow\left(x^3+3x^2+3x+1\right)+\left(y^3+3y^2+3y+1\right)+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\right]+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)
Lại có :\(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1=\left[\left(x+1\right)-\frac{1}{2}\left(y+1\right)\right]^2+\frac{3}{4}\left(y+1\right)^2+1>0\)
Nên \(x+y+2=0\Rightarrow x+y=-2\)
Ta có :
\(M=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{-2}{xy}\)
Vì \(4xy\le\left(x+y\right)^2\Rightarrow4xy\le\left(-2\right)^2\Rightarrow4xy\le4\Rightarrow xy\le1\)
\(\Rightarrow\frac{1}{xy}\ge\frac{1}{1}\Rightarrow\frac{-2}{xy}\le-2\)
hay \(M\le-2\)
Dấu "=" xảy ra khi \(x=y=-1\)
Vậy \(Max_M=-2\)khi \(x=y=-1\)
c) ( Mình nghĩ bài này cho x, y, z ko âm thì mới xảy ra dấu "=" để tìm Min chứ cho x ,y ,z dương thì ko biết nữa ^_^ , mình làm bài này với điều kiện x ,y ,z ko âm nhé )
Ta có :
\(\hept{\begin{cases}2x+y+3z=6\\3x+4y-3z=4\end{cases}\Rightarrow2x+y+3z+3x+4y-3z=6+4}\)
\(\Rightarrow5x+5y=10\Rightarrow x+y=2\)
\(\Rightarrow y=2-x\)
Vì \(y=2-x\)nên \(2x+y+3z=6\Leftrightarrow2x+2-x+3z=6\)
\(\Leftrightarrow x+3z=4\Leftrightarrow3z=4-x\)
\(\Leftrightarrow z=\frac{4-x}{3}\)
Thay \(y=2-x\)và \(z=\frac{4-x}{3}\)vào \(P\)ta có :
\(P=2x+3y-4z=2x+3\left(2-x\right)-4.\frac{4-x}{3}\)
\(\Rightarrow P=2x+6-3x-\frac{16}{3}+\frac{4x}{3}\)
\(\Rightarrow P=\frac{x}{3}+\frac{2}{3}\ge\frac{2}{3}\)( Vì \(x\ge0\))
Dấu "=" xảy ra khi \(x=0\Rightarrow\hept{\begin{cases}y=2\\z=\frac{4}{3}\end{cases}}\)( Thỏa mãn điều kiện y , z ko âm )
Vậy \(Min_P=\frac{2}{3}\)khi \(\hept{\begin{cases}x=0\\y=2\\z=\frac{4}{3}\end{cases}}\)
\(B=\frac{x^2-2}{x^2+1}=\frac{x^2+1-3}{x^2+1}=1-\frac{3}{x^2+1}\)
\(B_{min}\Rightarrow\left(\frac{3}{x^2+1}\right)_{max}\Rightarrow\left(x^2+1\right)_{min}\)
\(x^2+1\ge1\). dấu = xảy ra khi x2=0
=> x=0
Vậy \(B_{min}\Leftrightarrow x=0\)
ta có: \(x^2+2x-2=x^2+2x+1^2-3=\left(x+1\right)^2-3\ge-3\)
dấu = xảy ra khi \(x+1=0\)
\(\Rightarrow x=-1\)
Vậy\(\left(x^2+2x-2\right)_{min}\Leftrightarrow x=-1\)
\(\text{Giải}\)
\(\text{ĐKXD:}\)\(x\ne1;x\ne4;x\ne-8\)
\(A=\frac{x^2-5x+4}{x^2+7x-8}=\frac{\left(x-1\right)\left(x-4\right)}{\left(x-1\right)\left(x+8\right)}=\frac{x-4}{x+8}\)
\(A\inℤ\Leftrightarrow x-4⋮x+8\Leftrightarrow\left(x+8\right)-\left(x-4\right)⋮x+8\)
\(\Leftrightarrow12⋮x+8\Leftrightarrow x+8\in\left\{\pm1;\pm2;\pm3;\pm6;\pm12\right\}\)
\(\Leftrightarrow x\in\left\{-9;-7;-6;-10;-5;-11;-2;-14;4;-20\right\}\)
\(c,A=1\Leftrightarrow x-4=x+8\left(\text{vô lí}\right)\)
\(\text{Vậy không thể tìm được x sao cho: A=1}\)
mình nghĩ là "vô nghiệm" chứ ko phải "vô lí" đúng ko
vô lí hay là vô nghiệm
a
\(ĐKXĐ:x\ne3;x\ne-3;x\ne0\)
b
\(A=\left(\frac{9}{x^3-9x}+\frac{1}{x+3}\right):\left(\frac{x-3}{x^2+3x}-\frac{x}{3x+9}\right)\)
\(=\left[\frac{9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x+3}\right]:\left[\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right]\)
\(=\frac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}:\frac{3x-9-x^2}{3x\left(x+3\right)}\)
\(=\frac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}\cdot\frac{3x\left(x+3\right)}{-\left(9-3x+x^2\right)}=\frac{-3}{x-3}\)
c
Với \(x=4\Rightarrow A=-3\)
d
Để A nguyên thì \(\frac{3}{x-3}\) nguyên
\(\Rightarrow3⋮x-3\)
Làm nốt.
Ta có:
\(A=\sqrt{4\sqrt{x}-x}\) (ĐK: \(16\ge x\ge0\))
Mà: \(\sqrt{4\sqrt{x}-x}\ge0\forall x\)
Dấu "=" xảy ra:
\(4\sqrt{x}-x=0\)
\(\Leftrightarrow4\sqrt{x}-\left(\sqrt{x}\right)^2=0\)
\(\Leftrightarrow\sqrt{x}\left(4-\sqrt{x}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\4-\sqrt{x}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=16\end{matrix}\right.\)
Vậy: \(A_{min}=0\) khi \(\left[{}\begin{matrix}x=0\\x=16\end{matrix}\right.\)
A không tính max đc nhé