K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 8 2022

Mỗi bài bạn chỉ nên đăng 1 lần thôi. Tránh đăng lặp lại nhiều gây loãng box toán.

19 tháng 5 2019

Đáp án: B

Ta có:

A =  sin 2 x  + 2cos⁡x + 1 = 1 -  cos 2 x  + 2cos⁡x + 1 = - cos 2 x  + 2cos⁡x + 2

A = -( cos 2 x  - 2cos⁡x + 1) + 3 = -(cosx - 1 ) 2  + 3

Mà -(cosx - 1 ) 2  ≤ 0 ⇒ -(cosx - 1 ) 2  + 3 ≤ 3

Vậy giá trị lớn nhất của A bằng 3

NV
20 tháng 5 2020

\(A=\frac{sin3x-sinx+cos2x}{cosx-cos3x+sin2x}=\frac{2cos2x.sinx+cos2x}{2sin2x.sinx+sin2x}=\frac{cos2x\left(2sinx+1\right)}{sin2x\left(2sinx+1\right)}=\frac{cos2x}{sin2x}=cot2x\)

11 tháng 3 2019

ta có:

\(-1\le\sin x\le1\)

=> \(3.\left(-1\right)-2\le P\le3.1-2\)

suy ra: \(-5\le P\le1\)

\(maxP=1\)<=> sin x=1<=> \(x=\frac{\pi}{2}+k2\pi\)

25 tháng 3 2017

Chọn A.

Từ giả  thiết suy ra:

A = (cos4x + cos2x sin2x) + sin2x = cos2x(sin2x + cos2x ) + sin2x

A = cos2x.1 + sin2x = 1

3 tháng 9 2016

Đặt \(A=\frac{x^2+2}{x^2+x+2}\)

Ta có \(A\left(x^2+x+2\right)=x^2+2\Leftrightarrow x^2\left(A-1\right)+Ax+\left(2A-2\right)=0\)

Nếu A = 1 thì x = 0

Nếu \(A\ne1\) , Xét \(\Delta=A^2-4\left(A-1\right).\left(2A-2\right)=A^2-8\left(A-1\right)^2=-7A^2+16A-8\)

Để pt có nghiệm thì \(\Delta\ge0\Leftrightarrow-7A^2+16A-8\ge0\Rightarrow\frac{8-2\sqrt{2}}{7}\le A\le\frac{8+2\sqrt{2}}{7}\)

Từ đó tìm được giá trị lớn nhất và nhỏ nhất .

3 tháng 9 2016

Cảm ơn bạn rất nhiều!