Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ thấy: \(f\left(x\right)=\left(x+m-1\right)^2-m^2+5m-6\ge-m^2+5m-6\)
Giá trị nhỏ nhất của f(x) đạt lớn nhất tức \(-m^2+5m-6\) đạt lớn nhất
Mà \(g\left(m\right)=-m^2+5m-6=-\left(m-\dfrac{5}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)
g(m) đạt lớn nhất khi m=5/2
m cần tìm là 5/2
\(P=\left|x+2\right|+\left|3-x\right|\ge\left|x+2+3-x\right|=5\)
Dấu "=" xảy ra khi \(-2\le x\le3\)
\(\Rightarrow x_{max}=3\)
Đặt \(A=\frac{x^2+2}{x^2+x+2}\)
Ta có \(A\left(x^2+x+2\right)=x^2+2\Leftrightarrow x^2\left(A-1\right)+Ax+\left(2A-2\right)=0\)
Nếu A = 1 thì x = 0
Nếu \(A\ne1\) , Xét \(\Delta=A^2-4\left(A-1\right).\left(2A-2\right)=A^2-8\left(A-1\right)^2=-7A^2+16A-8\)
Để pt có nghiệm thì \(\Delta\ge0\Leftrightarrow-7A^2+16A-8\ge0\Rightarrow\frac{8-2\sqrt{2}}{7}\le A\le\frac{8+2\sqrt{2}}{7}\)
Từ đó tìm được giá trị lớn nhất và nhỏ nhất .