K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2020

(4x)^2 - 2.4x.4 + 4^2 = ( 4x + 16 )^2 sai rồi bạn .____.

19 tháng 3 2020

\(H=3-16x^2+32x\)

\(H=-\left(16x^2-32x-3\right)\)

\(H=-\left[\left(4x\right)^2-2\cdot4x\cdot4+16-19\right]\)

\(H=-\left[\left(4x-4\right)^2-19\right]\)

\(H=19-\left(4x-4\right)^2\le19\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\)

20 tháng 8 2016

RẤT MONG CÓ AI ĐỌC QUA, LÀM ƠN HÃY GIÚP MÌNH T^T

5 tháng 1 2017

\(M=\left|x-1\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|\)

Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(M\ge\left|x-1+3-x\right|=\left|2\right|=2\)

Dấu " = " xảy ra khi \(x-1\ge0;3-x\ge0\)

\(\Rightarrow x\ge1;x\le3\)

\(\Rightarrow1\le x\le3\)

Vậy \(MIN_M=2\) khi \(1\le x\le3\)

18 tháng 3 2020

Vậy cần tìm MIN -H, cho dễ nhé

\(-H=16x^2-16x-14=16\left(x^2-x+\frac{1}{4}\right)-18=16\left(x-\frac{1}{2}\right)^2-18\ge-18\)

Vậy MIN -H là -18 suy ra MAX -H là 18 với x=1/2

\(M=\left(2x+5\right)^3-30x\left(2x+5\right)-8x^3\)

\(=\left(2x+5\right)\left(4x^2+20x+25-30x\right)-8x^3\)

\(=\left(2x+5\right)\left(4x^2-10x+25\right)-8x^3\)

\(=8x^3+125-8x^3\)

=125

2 tháng 10 2021

CẢM ƠN bạn nhiều lắm !!!!!!!yeuyeu

16 tháng 8 2023

ko

16 tháng 8 2023

tên bạn kì v

16 tháng 8 2023

\(D=-x^2-y^2+xy+2x+2y\)

\(\Rightarrow D=-\dfrac{x^2}{2}+xy-\dfrac{y^2}{2}-\dfrac{x^2}{2}+2x-\dfrac{y^2}{2}+2y\)

\(\Rightarrow D=-\left(\dfrac{x^2}{2}-xy+\dfrac{y^2}{2}\right)-\left(\dfrac{x^2}{2}-2x\right)-\left(\dfrac{y^2}{2}-2y\right)\)

\(\Rightarrow D=-\left(\dfrac{x^2}{2}-2.\dfrac{x}{\sqrt[]{2}}.\dfrac{y}{\sqrt[]{2}}+\dfrac{y^2}{2}\right)-\left(\dfrac{x^2}{2}-2.\dfrac{x}{\sqrt[]{2}}.\sqrt[]{2}+2\right)-\left(\dfrac{y^2}{2}-2.\dfrac{y}{\sqrt[]{2}}.\sqrt[]{2}+2\right)+2+2\)

\(\Rightarrow D=-\left(\dfrac{x}{\sqrt[]{2}}-\dfrac{y}{\sqrt[]{2}}\right)^2-\left(\dfrac{x}{\sqrt[]{2}}-\sqrt[]{2}\right)^2-\left(\dfrac{y}{\sqrt[]{2}}-\sqrt[]{2}\right)^2+4\)

mà \(\left\{{}\begin{matrix}-\left(\dfrac{x}{\sqrt[]{2}}-\dfrac{y}{\sqrt[]{2}}\right)^2\le0,\forall x;y\\-\left(\dfrac{x}{\sqrt[]{2}}-\sqrt[]{2}\right)^2\le0,\forall x\\-\left(\dfrac{y}{\sqrt[]{2}}-\sqrt[]{2}\right)^2\le0,\forall y\end{matrix}\right.\)

\(\Rightarrow D=-\left(\dfrac{x}{\sqrt[]{2}}-\dfrac{y}{\sqrt[]{2}}\right)^2-\left(\dfrac{x}{\sqrt[]{2}}-\sqrt[]{2}\right)^2-\left(\dfrac{y}{\sqrt[]{2}}-\sqrt[]{2}\right)^2+4\le4\)

\(\Rightarrow GTLN\left(D\right)=4\left(tạix=y=2\right)\)

28 tháng 10 2016

A=x2+10x+35=x2+10x+25+10=x2+2*x*5+52+10=(x+5)2+10

Ta có: (x+5)2>=0(với mọi x)

=> (x+5)2+10>=10(với mọi x)

hay A>=10(với mọi x)

Do đó, GTNN của A là 10 khi: (x+5)2=0

x+5=0

x=0-5

x=-5

Vậy GTNN của A là 10 tại x=-5

28 tháng 10 2016

thanks bạn ạ