K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2017

\(M=\left|x-1\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|\)

Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(M\ge\left|x-1+3-x\right|=\left|2\right|=2\)

Dấu " = " xảy ra khi \(x-1\ge0;3-x\ge0\)

\(\Rightarrow x\ge1;x\le3\)

\(\Rightarrow1\le x\le3\)

Vậy \(MIN_M=2\) khi \(1\le x\le3\)